
VBMP ()

1. Overview

¶ 1.1 Feature summary

¶ 1.2 The language support library

¶ 1.3 The control support library

¶ 1.4 Pragmas and the "convert- test- fix" cycle convert- test- fix

2. Using VB Migration Partner VB Migration Partner

¶ 2.1 Loading the VB6 project VB6

¶ 2.2 Converting to VB.NET VB.NET

¶ 2.3 Compiling the VB.NET solution VB.NET

¶ 2.4 Fixing the VB6 code VB6

¶ 2.5 Launching Visual Studio Visual Studio

¶ 2.6 Using code analysis features

¶ 2.7 Using assessment features

¶ 2.8 Customizing the code window

3. Converting Language Elements

¶ 3.1 Array bounds

¶ 3.2 Default members

¶ 3.3 GoSub, On GoTo, and On GoSub keyword GoSub On GoTo On GoSub

¶ 3.4 Fixed- length strings (FLSs)

¶ 3.5 Type End Type blocks (UDTs) Type End Type

¶ 3.6 Auto- instancing variables

¶ 3.7 Declare statements

¶ 3.8 Variant and Control variables

¶ 3.9 Classes and Interfaces

¶ 3.10 Finalization and disposable classes disposable

¶ 3.11 ActiveX Components ActiveX

¶ 3.12 Persistable classes

¶ 3.13 Resources

¶ 3.14 Minor language differences

¶ 3.15 Unsupported features and controls

¶ 3.16 The VB6Config class VB6Config

4. Advanced Topics

¶ 4.1 The VBMigrationPartner_Support module VB Migration Partner

¶ 4.2 Code analysis features

¶ 4.3 Refactoring features

¶ 4.4 Extenders

¶ 4.5 Support for 3rd- party ActiveX controls ActiveX

¶ 4.6 Using the VBMP command- line tool VBMP

¶ 4.7 The VB Project Dumper add- in VB

¶ 4.8 Support for Dynamic Data Exchange (DDE) Dynamic Data Exchange (DDE)

5. Pragma Reference

¶ 5.1 Project- level pragmas

¶ 5.2 Pragmas that affect classes

¶ 5.3 Pragmas that affect fields and variables

¶ 5.4 Pragmas that affect how code is converted

¶ 5.5 Pragmas that affect forms and controls

¶ 5.6 Pragmas that affect user controls

¶ 5.7 Pragmas that insert or modify code

¶ 5.8 Pragmas that affect upgrade messages

¶ 5.9 Miscellaneous pragmas

Appendix A. ADOLibrary A ADOLibrary

¶ A.1. Features and Limitations

¶ A.2. Installing and Using ADOLibrary ADOLibrary

¶ A.3. ADOLibrary Reference ADOLibrary

1. Overview

¶ 1.1 Feature summary

¶ 1.2 The language support library ◘ⱳכ♩ꜝ▬Ⱪꜝꜞ

¶ 1.3 The control support library ◖fi♩꜡כꜟ◘ⱳכ♩ꜝ▬Ⱪꜝꜞ

¶ 1.4 Pragmas and the "convert -test -fix" cycle ⱪꜝ◓ⱴ≤₈convert -test -fix₉◘▬◒ꜟ

1. Overview

VB Migration Partner is a tool that converts VB6 applications to VB.NET. It matches or exceeds the features of the

conversion and assessment tools included in Microsoft Visual Studio 2005 or 2008, available on Microsofts site, or

provided by other vendors, and is aimed at both the developer and the team manager that needs to plan the

migration process. Release 1.0 generates both VB2005 and VB2008 applications.

VB Migration Partner VB6 VB.NET Microsoft

Visual Studio 2005 2008 Microsoft

/

http://www.infortech.co.jp/product/vbmp_translated_manual_chapter1.html#1

1.0 VB2005 VB2008

VB Migration Partners engine is so fast that VB6 developers can use it to see where the problematic code

sections, have a draft version of the VB.NET application, and produce an estimation of the time required to

complete the migration process, all in a fraction of the time needed to run the Upgrade Wizard tool included in

Microsoft Visual Studio.

VB Migration Partner VB.NET

Microsoft Visual

Studio Upgrade Wizard

At the end of the migration process VB Migration Partner produces accurate reports about the problems it found

together with metrics about the code being migrated. These reports include estimations of the time required to

migrate the VB6 application and individual projects or classes. Reports also include sophisticated code metrics,

such as total and average cyclomatic index, maximum and average depth of control structures, ratio of comments

to code, in addition to a summary of all the migration issues found by the parser engine. The cost related to these

metrics and issues (in terms of time and money) is fully configurable, and users can export metrics to Microsoft

Excel for further analysis.

VB Migration Partner

VB6

)

Microsoft Excel

VB Migration Partner owes its high success ratio to its two main components: (a) a better parser and code

generation engine, and (b) a support library that contains both the language support library and the control support

library.

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Metrics.gif

VB Migration Partner (a)

(b)

For example, VB Migration Partners parser is able to convert a VB6 project groups into a VB.NET solution; it can

convert GoSub and On Goto/Gosub statements; Declare parameters declared with As Any or that stand for

callback addresses; User Define Type (UDT) blocks that require initialization, auto- instancing variables and arrays,

IDisposable objects, fixed- length strings, and much more.

VB Migration Partner VB6 VB.NET

GoSub On Goto/Gosub As Any

IDisposable

For converted VB.NET applications to run correctly it is mandatory that the support library be distributed with the

other executable files. While a few developers might dislike the approach based on the support library, it can be

easily proved that only this approach can offer full compatibility with VB6 peculiarities and idiosyncrasies.

VB.NET

VB6

Code Architects plans to release more efficient and robust versions of the support library over time. When a new

version of the support library is released, existing VB.NET applications that use the support library can be upgraded

by simply deploying the new version on the end users computer, without having to re- run VB Migration Partner.

VB Migration Partner

VB.NET

1.1 Feature summary

This section summarizes the main features of Code Architects VB Migration Partner, with emphasis on those that

are unique to this product.

VB Migration Partner

General

¶ high -speed conversion (up to 400 VB6 lines on a 3GHz system)

¶ runs outside Visual Studio

VisualStudio ≤ ∆╢↓≤⌂ↄ ≢⅝╕∆⁹

¶ pragmas and extenders can affect migration behavior and help produce better code

ⱪꜝ◓ⱴ≤◄◒☻♥fi♄כ◖│כ♪ ⌐ ╩ ⅎ⁸ ╩♪כ◖☻כ♁─ ∆╢─⌐ ∟╕∆⁹

¶ open architecture allows 3rd -party vendors to add support for their own ActiveX controls

│כ♄ⱬfi▫♥כⱤ♪כ◘≢→⅛⅔─ꜗ♅◒♥◐כ▪ⱪfiכ○ ─ ActiveX ◖fi♩꜡כꜟ╩◘ⱳכ

♩∆╢↓≤⅜≢⅝╕∆⁹

Language

¶ VB6 project groups are migrated to VB.NET solutions, project references are retained

VB6 ─ⱪ꜡☺▼◒♩◓ꜟכⱪ│ⱪ꜡☺▼◒♩ ⅜ ↕╣√ VB.NET ⌐fiꜛ◦כꜙꜞ♁ ↕╣╕

∆⁹

¶ arrays with lower index other than zero

♀꜡ ─▬fi♦♇◒☻─

¶ Gosub keyword, calculated On ΝGoto/Gosub

Gosub◐כ꞉כ♪≤ ↕╣╢ OnΝGoto/Gosub

¶ auto-instancing (As New) variables and arrays

▬fi☻♃fi☻ (As New) /

¶ ΓAs AnyΔ parameters and callback parameters (AddressOf) in Declare statements

Declare ♃כⱣ♇◒Ɽꜝⱷꜟכ◖≥♃כⱷfi♩⌐⅔↑╢₈AS Any₉Ɽꜝⱷ♩כ♥☻ AddressOf

¶ most VB6 keywords not supported by VB.NET, including IsMissing, Array, DoEvents

VB.NET ≢│◘ⱳכ♩↕╣⌂™ IsMissing ⁸Array ⁸DoEvents ╩ ╗╒≤╪≥─ VB6 ♪כ꞉כ◐

¶ methods in support library exactly replicate the original VB6 behavior (e.g. Format, Dir, MsgBox),

so that les s time has to be spent on reviewing warnings

◘ⱳכ♩ꜝ▬Ⱪꜝꜞ─ⱷ♁♇♪│ ─ VB6 ─ ╩ ⌐ Format⁸Dir⁸MsgBox ∆╢─

╩כꜝ◄⁸≢ ∆╢√╘⌐ ⌂ ╩ ≢⅝╕∆⁹

¶ full support for Type blocks (UDTs), fixed -length strings and arrays thereof

♃▬ⱪⱩ꜡♇◒ ◙כꜚ ≤∕─ ≤ ╩ ⌐◘ⱳ⁹∆╕⇔♩כ

¶ reading and writing default properties, even in late -bound mode

Ᵽ▬fi♦▫fi◓⌐╙ ∆╢♦ⱨ◊ꜟ♩ⱪ꜡Ɽ♥▫─ ╖ ⅝

¶ partial support for Variants, including Empty, Null, and null propagation in string expressions

Empty⁸Null ⁸Null ╩ ╗Ᵽꜞ▪fi♩╩ ⌐◘ⱳ⁹∆╕⇔♩כ

¶ VB6 system objects, including Screen , Clipboard, App, and Printer

Screen⁸Clipboard⁸App⁸∕⇔≡ Printer ╩ ╗ VB6 ◦☻♥ⱶ○Ⱪ☺▼◒♩

Forms and Controls ⱨ◊כⱶ≤◖fi♩꜡כꜟ

¶ converts all controls installed with VB6 (with the exception of OLE container and Repeater

control)

VB6 ⌐╟∫≡▬fi☻♩כꜟ↕╣╢ OLE ◖fi♥♫≤ Repeater ◖fi♩꜡כꜟ ─ ◖fi♩꜡כꜟ

╩ ⇔╕∆⁹

¶ controls in support library exactly replicate the original VB6 behavior

◘ⱳכ♩ꜝ▬Ⱪꜝꜞ─◖fi♩꜡כꜟ│ ─ VB6 ─ ╩ ⌐ ⇔╕∆⁹

¶ control arrays, including arrays of menus and 3rd -party controls

ⱷ♬ꜙכ◘≥כ♪Ɽכ♥▫ ◖fi♩꜡כꜟ─ ╩ ╗◖fi♩꜡כꜟ

¶ dynamic control creation, both th rough control arrays and the Controls.Add method

◖fi♩꜡כꜟ ≤ Controls.Add ╩ ∫√ ⌂◖fi♩꜡כꜟ

¶ popup menus and menu shortcuts

ⱳ♇ⱪ▪♇ⱪⱷ♬ꜙכꜛ◦≥כ♩◌♇♩ⱷ♬ꜙכ

¶ help-related properties and methods

Ⱬꜟⱪ⌐ ⇔√ⱪ꜡Ɽ♥▫≤ⱷ♁♇♪

¶ graphic methods: Line, Circle, PSet, Cls, PaintPicture, Pr intForm methods and all graphics -related

properties (with the only exception of ClipControls and DrawMode)

◓ꜝⱨ▫♇◒ⱷ♁♇♪⁸∆⌂╦∟⁸Line⁸Cirlcle⁸PSet⁸Cls⁸PaintPicture ⁸PrintForm ⱷ♁♇♪≤

ClipControls ≤ DrawMode ─ ∆═≡─◓ꜝⱨ▫♇◒ ⱪ꜡Ɽ♥▫

¶ any value for the ScaleMode property, i ncluding custom coordinate systems

◌☻♃ⱶ◖כ♦▫Ⱡכ♩◦☻♥ⱶ╩ ╗ ScaleModeⱪ꜡Ɽ♥▫⌐ ∆╢∆═≡─

¶ ΓclassicΔ (VB6-style) drag -and-drop

₈ ₉(VB6)♪ꜝ♇◓▪fi♪♪꜡♇ⱪ

¶ automatic and manual OLE drag -and-drop

╕√│ OLE ♪ꜝ♇◓▪fi♪♪꜡♇ⱪ

¶ DAO and RDO data binding

DAO ≥◓Ᵽ▬fi♦▫fi♃כ♦ RDO ◓Ᵽ▬fi♦▫fi♃כ♦

¶ ADO Data binding, including binding to ADO Recordsets and BindingCollection objects, with

support for custom data formatting and StdDataFormat objects

◌☻♃ⱶ♦כ♃ⱨ◊כⱴ♇♩≤ StdDataFormat ○Ⱪ☺▼◒♩╩ ℮ ADO ≥♩♇☿♪כ◖꜠

BindingCollection ○Ⱪ☺▼◒♩⌐ ╩◓Ᵽ▬fi♦▫fi♃כ♦╢∆ ╗ ADO ◓Ᵽ▬fi♦▫fi♃כ♦

¶ Data Environment objects (excluding support for grouping and hierarchical recordsets)

ⱪכꜟ◓ ≥♩♇☿♪כ◖꜠√╣↕ ♩♇☿♪כ◖꜠√╣↕ ─ DataEnvironment ○Ⱪ☺

▼◒♩

¶ ADO data -source classes and ADO simple data consumer classes

ADO ≥☻ꜝ◒☻כ♁♃כ♦ ADO ◦fiⱪꜟ♦כ♃◖fi◦ꜙכⱴ◒ꜝ☻

¶ full support for printi ng, including the Printer object, the Printers collection, and the Print and

PageSetup common dialogs

ⱪꜞfi♃○Ⱪ☺▼◒♩⁸ⱪꜞfi♃◖꜠◒◦ꜛfi⁸ ≤Ɑכ☺☿♇♩▪♇ⱪ◖⸗fi♄▬▪꜡◓╩ ╗

COM Components COM◖fiⱳכⱠfi♩

¶ better support for IDisposable objects and finalization, including automatic d isposal of fields and

variables pointing to disposable objects

⌂○Ⱪ☺▼◒♩╩ ∆ ⌐ ↕╣╢○Ⱪ☺▼◒♩─ⱨ▫כꜟ♪≤ ╩ ╗

≤ IDisposable ○Ⱪ☺▼◒♩

¶ MTS/COM+ components, including support for most common objects in comsvcs.dll

comsvcs.dll ─ ╙ ⌂○Ⱪ☺▼◒♩╩ ╗ MTS/COM+◖fiⱳכⱠfi♩

¶ priva te and public UserControl classes

ⱪꜝ▬ⱬכ♩⅔╟┘ⱤⱩꜞ♇◒─ꜚכ◙כ◖fi♩꜡כꜟ◒ꜝ☻

¶ persistable classes and the PropertyBag object

Persistable ◒ꜝ☻≤ PropertyBag ○Ⱪ☺▼◒♩

¶ Sub Main is correctly called before any class in a DLL (as in VB6)

VB6 ─╟℮⌐ Sub Main ⅜ Dll ─∆═≡─◒ꜝ☻╟╡ ↄ ⇔ↄ ┘ ↕╣╕∆⁹

¶ VB6 Description attribute translates to XML comments and (if inside a UserControl) to Description

attributes

VB6─Description attributes ╩XML ◖ⱷfi♩≤ ꜟכ꜡♩fi◖כ◙כꜚ ─ ⌐│ Description

attributes ⌐ ⇔╕∆⁹

¶ support for common type libraries such as FileSystemObject, Dictionary, and RegExp, without

requiring COM Interop

COM Interop ╩ ≤⇔⌂™ ⁸ ⁸ⱨ□▬ꜟ◦☻♥ⱶ○Ⱪ☺▼◒♩─╟℮⌂◖⸗fi♃▬ⱪ

ꜝ▬Ⱪꜝꜞ╩◘ⱳ⁹∆╕⇔♩כ

1.2 The language support library

The language support library is entirely contained in the CodeArchitects.VBLibrary.DLL file and provides support

for language commands that behave differently (or are missing) in the Microsoft.VisualBasic.dll file that comes with

VB2005. All the objects and methods implemented in this support library have a trailing 6 appended to the

original VB6 name, as in DoEvents6 or App6.

CodeArchitects.VBLibrary.Dll VisualStudio2005

Microsoft.VisualBasic.Dll

 VB6 6

 App6 DoEvents6

For example, this VB6 code fragment:

 VB6

 If IsEmpty(value) Or IsNull(value) Then

 value = Array(1, 2, 3, 4, 5)

 End If

is translated to VB.NET as follows:

VB.NET

 If IsEmpty6(value) Or IsNull6(value) Then

 value = Array6(1, 2, 3, 4, 5)

 End If

Methods that replace or extend members of the Microsoft.VisualBasic.dll library are exposed as members of the

VB6Methods module, or other modules defined in the CodeArchitects.VBLibrary.dll.

Microsoft.VisualBasic.Dll VB6

CodeArchitects.VBLibrary.Dll

These are the VB6 keywords that arent supported by VB.NET and that VB Migration Partner supports by means

of the language support library:

VB6 VB.NET VBMigrationPartner

¶ Array6 creates an array of Object elements.

Array6 │○Ⱪ☺▼◒♩ ─ ╩ ⇔╕∆⁹

¶ CVar6 returns an instance of the VB6Variant class.

CVar6 │ VB6Variant ◒ꜝ☻─▬fi☻♃fi☻╩ ⇔╕∆⁹

¶ CVErr6 returns an instance of the VB6Err or class.

CVErr6 │ VB6Error ◒ꜝ☻─▬fi☻♃fi☻╩ ⇔╕∆⁹

¶ IsEmpty6 , IsMissing6 , IsNull6 , and IsObject6 methods account for VB6Variant values.

VB6Variant Value ─√╘─ⱷ♁♇♪▪◌►fi♩≢№╢ IsEmpty6 ⁸IsMissing6 ⁸IsNull6 ⁸IsObject6

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Library.gif

¶ LoadPicture6 supports all the arguments as the original VB 6 method, but throws an exception if

these extra arguments can ΐt be honored.

LoadPicture6 │○ꜞ☺♫ꜟ VB6 ⱷ♁♇♪─ ≡─ ╩◘ⱳ⁸⅜∆≢⁹∆╕⇔♩כ╙⇔ ⌂ ⅜

╘╠╣⌂™ │⁸ ⁹∆╕⇔כ꜡☻╩

¶ String6 works like StrDup but supports numeric values for its second argument.

String6 │ StrDup ─╟℮⌐ ⇔╕∆⁹2≈ ─ ≢№╢ ╩◘ⱳ⁹∆╕⇔♩כ

¶ SavePicture6 saves an image to BMP format.

SavePicture6 │ⱦ♇♩ⱴ♇ⱪⱨ◊כⱴ♇♩▬ⱷכ☺╩ ⇔╕∆⁹

¶ VarType6 works correctly with scalar and array values stored in an Object element.

VarType6 │○Ⱪ☺▼◒♩ ─ ≥כꜝ◌☻⌐ ─ ╩ ∆╢╟℮⌐ ⌐ ⇔╕∆⁹

A few methods are supported by VB.NET but behave slightly differently from VB6, therefore VB Migration Partner

re- implements them to ensure that no discrepancy exists:

VB.NET VB6 VBMigrationPartner

¶ Abs6 works with Boolean values, too.

Abs6│Ⱪכꜟ ≢╙ ⇔╕∆⁹

¶ AppActivate6 supports a second wait argument .

AppActivate6 │ ─ wait ╩◘ⱳ⁹∆╕⇔♩כ

¶ CDate6 accepts numeric values strings whose month and day values are reversed (locale -tolerant).

CDate6 │ ≤ ─ ⅜ ⌐⌂∫≡™╢ ≢╙ ─ꜟכ◔꜡ ≤⇔≡ ⇔↑╣┌ ⇔╕

∆⁹

¶ CreateObject6 works well also with public (managed) classes exposed by the current solution.

CreateObject6 │ ↕╣√ⱤⱩꜞ♇◒◒ꜝ☻≤⇔≡ ≢fiꜛ◦כꜙꜞ♁─ ↕╣⁸ ⇔╕∆⁹

¶ DebugPrint6 and DebugPrintLine6 display strings in the Debug window in the same format used

by VB6.

DebugPrint6 ≤ DebugPrintLine6 │ VB6 ≤╕∫√ↄ ∂ⱨ◊כⱴ♇♩─ DebugWindow ≢ ╩

⇔╕∆⁹

¶ Dir6 returns Γ.Δ and Γ..Δ elements and then returns names of files in a directory.

Dir6 │₈.₉╛₈..₉≤™℮ ╩ ⇔╕∆⁹╕√♦▫꜠◒♩ꜞ ─ⱨ□▬ꜟ ╩ ⇔╕∆⁹

¶ DoEvents6 returns the number of open forms.

DoEvents6 │ ⅛╣≡™╢ⱨ◊כⱶ─ ╩ ⇔╕∆⁹

¶ FileDateTime6 works with both files and directories (the VB.NET method works only with files).

FileDateTime6 │ⱨ□▬ꜟ≤♦▫꜠◒♩ꜞ─ ≢ ⇔╕∆⁹ VB.NET ─ⱷ♁♇♪≢│ⱨ□▬ꜟ─

╖⇔⅛ ⇔╕∑╪

¶ FileOpen6 , FileClose6 , FileGet6 , FilePut6 , and all other file -oriented method rea d and write values

and UDTs using the same format that VB6 uses.

FileOpen6⁸FileClose6⁸FileGet6⁸FilePut6 ⁸╕√ ≡─ ─ⱨ□▬ꜟ ⱷ♁♇♪│ ╩ ╖ ⅝

⇔╕∆⁹VB6 ≢ ⇔≡™╢⁸ ∂ⱨ◊כⱴ♇♩─ꜚכ◙כ ≢ ╦╣≡™╕∆⁹

¶ Format6 supports named formats (e.g. Γscientific Δ) and null values, and accounts for m inor

differences between VB6 and VB.NET.

Format6 │ Null VB6 ≤ VB.NET ≤─╦∏⅛⌂ ™╩ ╘╢ ↕╣√ⱨ◊כⱴ♇♩ ╩◘ⱳכ♩

⇔╕∆⁹ scientific

¶ Input6 converts coordinates and correctly handles CRs in prompt strings.

Input6 │ⱪ꜡fiⱪ♩ ─ ≢ CR╩ ⇔ↄ ⇔⁸ ⌐ ⇔╕∆⁹

¶ IsDate6 accepts strings where m onth and day values are reversed.

IsDate6 │ ≤ ─ ⅜ ⌐⌂∫≡™╢ ╩ ⇔╕∆⁹

¶ Len6 works both with strings and User -Defined Types (UDTs).

Len6 │ כ◙כꜚ⁸≥ ─ ≢ ⇔╕∆⁹

¶ LSet6 has support for strings and partial support for UDTs.

LSet6 │ ╩◘ⱳכ◙כꜚ⁹∆╕⇔♩כ │ ◘ⱳ⁹∆╕⇔♩כ

¶ MsgBox6 correctly handles CRs in prompt.

MsgBox6 │ⱪ꜡fiⱪ♩ ─ CR╩ ⌐ ⇔╕∆⁹

¶ RSet6 supports strings.

RSet6│ ╩◘ⱳ⁹∆╕⇔♩כ

¶ Str6 works with dates.

Str6 │ ≤ ⌐ ⇔╕∆⁹

¶ StrConv6 can convert Byte arrays to a string and works better with conversions to and from

Unicode str ings.

StrConv6 │Ᵽ▬♩ ╩ ⌐ ∆╢↓≤⅜≢⅝⁸Unicode ⅛╠─ ╙ ⌐ ≢∆⁹

¶ TypeName6 returns the value that would be returned under VB6; for example, when applied to an

Int32 returns ΓLongΔ, when applied to a button control returns ΓCommandΔ, and so forth.

TypeName6 │ VB6≢─ ╡ ╩ ⇔╕∆⁹ ≤⇔≡⁸Int32 ≢ ↕╣√╙─│₈Long₉≢⁹Ⱳ♃

fi◖fi♩꜡כꜟ≢ ↕╣√╙─│₈Command₉≢⌂≥⁹

The following keywords have been re- implemented to support extra features for example, Variants and null

propagation in expressions that aren t natively supported by VB.NET:

Null

VB.NET

¶ Chr6, CurDir6 , Environ6 , Hex6, LCase6, Left6 , Mid6 , Oct6, Right6 , RTrim6 , Space6, Trim6 ,

andUCase6 account for null values.

Chr6⁸CurDir6 ⁸Environ6 ⁸Hex6⁸LCase6⁸Mid6⁸Oct6⁸Right6⁸RTrim6⁸Space6⁸Trim6 ⁸∕

⇔≡ UCase6│ Null ╩◘ⱳ⁹∆╕⇔♩כ

¶ IsArray6 , IsDate6 , IsError6 , IsNothing6 , and IsNumeric6 recognize values stored in Object and

VB6Variant variables.

IsArray6 ⁸IsDate6⁸IsError6 ⁸IsNothing6 ⁸∕⇔≡ IsNumeric6 │○Ⱪ☺▼◒♩≤ VB6 Ᵽꜞ▪fi♩

─ ─ ╩ ∆╢↓≤╩ ⇔╕∆⁹

¶ Erase6, Redim6, RedimPreserve6 , IsArray6 , LBound6 , and UBound6 work with regular arrays,

arrays stored in Object variables, and VB6Array objects.

Erase6⁸Redim6⁸RedimPreserve6⁸IsArray6 ⁸LBound6⁸UBound6 │ ⌂ ╩◘ⱳכ♩⇔

╕∆⁹○Ⱪ☺▼◒♩ ─ ⌐ ↕╣√ ⁸VB6Array ○Ⱪ☺▼◒♩╙◘ⱳ⁹∆╕⇔♩כ

¶ Load6 and Unload6 perform additional processing that might be required in VB.NET applications

converted from VB6.

Load6 ≤ Unload6 │ VB6 ⅛╠ ↕╣√ VB.NET ▪ⱪꜞ◔כ◦ꜛfi≢ ⌐⌂╢⅛╙⇔╣⌂™

╩ ⇔╕∆⁹

The support library contains the counterpart of VB6 methods that cant be implemented or mimicked perfectly

under VB.NET. All the methods in this group are marked as Obsolete, thus they cause a warning message to be

displayed in the Error List window. When invoked, these methods either do nothing or throw an exception:

VB6 VB.NET

¶ ImeStatus6 and Calendar6 always return 0, assignments are ignored.

ImeStatus6 ≤ Calendar6 │ ⌐ ♀꜡ ╩ ⇔╕∆⁹ ─ │ ↕╣╕∆⁹

¶ AscB6, ChrB6, InstrB6, LeftB6, RightB6, MidB6, InputB6 , and LenB6 return an Γapproximate Δ

value in VB.NET, and the warning message encourages the developer to edit the original or

migrated code to get rid of such warnings.

AscB6⁸ChrB6⁸Instr B6⁸LeftB6⁸RightB6 ⁸MidB6⁸InputB6 ⁸LenB6 │ VB.NET ≢Γ Δ

╩ ⇔╕∆⁹╕√⁸ ⱷ♇☿כ☺│ ⅜ ╩ ╡ ↄ כ꜠◓▬ⱴ╛♪כ◖─ꜟ♫☺ꜞ○⁸⌐

◦ꜛfi ╩♪כ◖─ ∆╢─⌐ ∟╕∆⁹

¶ VarPtr6 , StrPtr6 , and ObjPtr6 throw an exception.

VarPtr6 ⁸StrPtr6 ⁸ObjPtr6 ⁹∆╕⇔כ꜡☻╩כꜝ◄│

The six VB6 system objects can be referenced by means of the following members:

VB6

¶ App6: most members are supported, included PrevInstance and methods related to event logging;

the OleRequest* and OleServer* properties aren ΐt supported and are marked as obsolete.

App6 ╒≤╪≥─ⱷfiⱣ│◘ⱳ⁹∆╕╣↕♩כ▬ⱬfi♩꜡◓⌐ ⇔√ PrevInstance ≤ⱷ♁♇♪╩

╖╕∆⁹OleRequest*≤ OleServer*ⱪ꜡Ɽ♥▫│ ↕╣√╙─≢∆─≢◘ⱳ⁹╪∑╕╣↕♩כ

¶ Clipboard6: all members are supported.

Clipboard6 ≡─ⱷfiⱣ│◘ⱳ⁹∆╕╣↕♩כ

¶ Screen6: all members are supported, except Fonts, FontCount, MousePointer, and Mouse Icon are

flagged as obsolete; assignments to MousePointer and MouseIcon throw an exception.

Screen6 ≡─ⱷfiⱣ│◘ⱳ⁹∆╕╣↕♩כFonts ╩ ⅝⁸FontCount ⁸MousePointer⁸MouseIcon

│ ↕╣╕⇔√⁹ ╡ ≡╠╣√ MousePointer ≤ MouseIcon │ ⁹∆╕⇔כ꜡☻╩

¶ Printer6 and Printers6 : all members are supporte d and behave exactly in VB6.

Printer6 ≤ Printers6 VB6 ─ ≤ ⁸ ≡─ⱷfiⱣ│◘ⱳ⁹∆╕╣↕♩כ

Note: support for the Printer6 and Printers6 objects is provided by the VBSupportLib.dll library. This DLL is a VB6

executable, therefore it requires that the VB6 runtime be installed on the target computer.

Printer6 Printers6 VB6SupportLib.dll Dll

VB6 VB6

In addition to methods and properties, the language DLL support most of the objects defined in the VB6 runtime. All

the objects in this group have a trailing VB6 prefix, as in VB6Variant and VB6PropertyBag.

Dll VB6

VB6Variant VB6PropertyBag VB6

¶ VB6AsyncProperty simu lates asynchronous properties in user controls.

VB6AsyncProperty ─ꜟכ꜡♩fi◖◙כꜚ│ ⱪ꜡Ɽ♥▫╩◦Ⱶꜙ꜠⁹∆╕⇔♩כ

¶ VB6DataBinding and the VB6DataBindings collection correspond to the DataBinding and

DataBindings objects defined in the VB6 runtime.

VB6DataBinding ≤VB6DataBind ings◖꜠◒◦ꜛfi│ VB6 ꜝfi♃▬ⱶ─ ↕╣√DataBinding ≤

DataBindings ○Ⱪ☺▼◒♩⌐ ⇔╕∆⁹

¶ VB6DataEnvironment provides most of the functionality offered by the DataEnvironment object,

except support for grouping, relations, and hierarchical recordsets.

VB6DataEnvironment │ DataEnviron ment ○Ⱪ☺▼◒♩⅜ ∆╢╒≤╪≥─ ╩ ⇔╕∆⁹

ⱪכꜟ◓⁸⇔∞√ fi⁸ꜛ◦כ꜠ꜞ⁸ ╩♩♇☿♪כ◖꜠ ⇔╕∆⁹

¶ VB6StdDataFormat and the VB6StdDataFormats collection provide support for custom formatting

in data binding scenarios.

VB6StdDataFormat ≤ VB6StdDataFormats ◖꜠◒◦ꜛfi│♦כ♃Ᵽ▬fi♦▫fi◓◦♫ꜞ○─◌☻♃

ⱶⱨ◊כⱴ♇♩◘ⱳכ♩╩ ⇔╕∆⁹

¶ VB6DataObject and VB6DataObjectFiles are used in drag -and-drop scenarios to contain data

moved from one control or application to another.

VB6DataObject ≤ VB6DataObjectFiles │ 1≈─◖fi♩꜡כꜟ╕√│▪ⱪꜞ◔כ◦ꜛfi⅛╠ ─▪ⱪ

≢╕fiꜛ◦כ◔ꜞ ╩♃כ♦√╣↕⅛ ≢○ꜞ♫◦ⱪ♇꜡♪ה♪fi▪ה◓♇ꜝ♪⌐─╗ ↕╣╕∆⁹

¶ VB6E rror is the object returned by the CVErr method.

VB6Error │ CVE ⱷ♁♇♪≢ ↕╣╢○Ⱪ☺▼◒♩≢∆⁹

¶ VB6LicenseInfo and the VB6Licenses collection simulate license features of user controls.

VB6LicenseInfo ≤VB6Licenses◖꜠◒◦ꜛfi│ꜚכ◙◖fi♩꜡כꜟ─ꜝ▬☿fi☻ ╩◦Ⱶꜙ꜠כ♩

⇔╕∆⁹

¶ VB6PropertyBag mimic s the functionality of the VB6 PropertyBag object, even though the storage

format differs from VB6 ΐs (in other words, it isn ΐt possible to read VB6 serialized objects from

VB.NET apps, and vice versa).

VB6PropertyBag │ VB6 ─ PropertyBag ○Ⱪ☺▼◒♩─ ╩ ⇔√╙─≢∆⁹≢∆⅜ VB6 ─

╙─≤│ ⱴ♇♩≢∆⁹כ◊ⱨ☺כ꜠♩☻√∫⌂ ™ ⅎ╢≤⁸VB.NET ─▪ⱪꜞ⅛╠◦ꜞ▪ꜟ ↕

╣√ VB6 ○Ⱪ☺▼◒♩╩ ╖ ╗↓≤│≢⅝╕∑╪⁹∕─ ╙ ≢∆⁹

¶ VB6Variant duplicates some of the functionality of the original VB6 Variant data type, such as

support for Null and Empty values.

VB6Variant │○ꜞ☺♫ꜟ VB6 Ᵽꜞ▪fi♩♦כ♃ ─ ─™ↄ≈⅛│ ⇔╕∆⁹Null ≤ ─

⌂≥╩◘ⱳ⁹∆╕⇔♩כ

¶ VB6VBControlExtender is the alias for the VBControlExtender object used to trap events from

controls that are added dynamically by means of the Controls.Add method.

VB6VBControlExtender │ Control.Add ⱷ♁♇♪⌐╟∫≡ ⌐ ↕╣√◖fi♩꜡כꜟ⅛╠─♩ꜝ

♇ⱪ▬ⱬfi♩⌐ ↕╣╢ VBControlExtender ○Ⱪ☺▼◒♩─◄▬ꜞ▪☻≢∆⁹

A few objects have no direct counterpart in VB6:

VB6

¶ VB6Array provides support for arrays with any lower index.

VB6Array │≥╪⌂⌐ ™▬fi♦♇◒☻─ ⌐╙ ⇔╕∆⁹

¶ VB6ArrayNew provides support for arra ys of auto-instancing objects (as in Dim arr() As New

Person).

VB6ArrayNew │ ▬fi☻♃fi☻○Ⱪ☺▼◒♩─ ╩◘ⱳ⁹∆╕⇔♩כ Dim arr() As New

Person

¶ VB6ControlArray mimics VB6 control arrays and can contain both built -in controls and 3rd party

controls.

VB6ControlArray │ VB6 ─◖fi♩꜡כꜟ ╩≤ ─ ╩⇔⁸ ◖fi♩꜡כꜟ≤ rdParty ◖

fi♩꜡כꜟ─ ⌐ ⁹

¶ VB6ControlCollection is the collection returned by the Controls property of forms and user control;

unlike the .NET Controls collection, it contains controls all the controls hosted by the form or the

user control, including those contained in container controls (e.g. a PictureBox or a Frame control).

VB6ContolCollection │ form ≡∫╟⌐▫♥ⱪ꜡Ɽꜟכ꜡♩fi◖─ꜟכ꜡♩fi◖◙כꜚ≥ ∆◖꜠◒◦

ꜛfi≢∆⁹.NET ─◖fi♩꜡כꜟ◖꜠◒◦ꜛfi≤│ ⌂╡╕∆⁹∕╣│◖fi♥♫◖fi♩꜡כꜟ⌐ ╕╣

√╙─╩ ╪≢™≡⁸form ≢ꜟכ꜡♩fi◖◙כꜚ⅛ ≡╠╣√ ≡─◖fi♩꜡כꜟ╩ ╪≢™╕∆⁹

 Pictur eBox╛ Frame Control

¶ VB6FixedString offer support for the translation of fixed -length strings (FLS).

VB6FixedString │ ╩ ∆╢◘ⱳכ♩╩ ⇔╕∆⁹

¶ VB6WindowSubclasser can be used to implement safer and more robust window subclassing.

VB6WindowSubclasser │╟╡ ≢ ⌂►▫fi♪►╩◘Ⱪ◒ꜝ☻ ∆╢─╩ ∆╢ ⌐ ℮↓

≤⅜ ╕∆⁹

Finally, the support library includes managed counterparts of the following COM objects:

COM

¶ VB6Binding and VB6BindingCollection duplicate the functionality of the Binding and

Binding Collection objects in the MSBind type library.

VB6Binding ≤ VB6BindingCollection │ MSBind Type Library ─ ─ Binding ≤

BindingCollectionObject ─ ╩ ⇔≡™╕∆⁹

¶ VB6Dictionary is the alias for the keyed collection defined in the Scripting type library.

VB6Dictionary │ Scripting Type Library ─ fi─◄▬ꜞ▪☻≢∆⁹ꜛ◦◒꜠◖כ◐√╣↕

¶ VB6FileSystemObjects and all related classes, such as VB6Drive and VB6File , mimic the behavior

of file -related objects defined in the Scripting type library.

VB6FileSystemObjects ≤ ≡─ ─№╢◒ꜝ☻⁸ ⅎ┌ VB6Drive ≤ VB6File │ Scripting Type

Library ─ ↕╣√ⱨ□▬ꜟ ○Ⱪ☺▼◒♩─ ╩ ⇔≡™╕∆⁹

¶ VB6ObjectContext is the VB.NET counterpart of the COMSVCSLib.ObjectContext used by

MTS/COM+ components.

VB6ObjectContext │ MTS/COM+◖fiⱳכⱠfi♩⌐╟∫≡ ↕╣≡™╢

COMSVCSLib.ObjectContext ─ VB.NET ≢∆⁹

¶ VB6RegExp and all r elated classes support the migration of VB6 apps that rely on the VBScript

Regex Engine type library.

VB6RegExp ≤ ≡─ ∆╢◒ꜝ☻│ VBScript Regex Engine type library ─ ─╙≤⌐ VB6 ▪

ⱪꜞ◔כ◦ꜛfi─ⱴ▬◓꜠כ◦ꜛfi╩◘ⱳ⁹∆╕⇔♩כ

1.3 The control support library

Here is the complete list of the 64 controls that VB Migration Partner supports:

VBMigrationPartner 64

Top-level objects ○Ⱪ☺▼◒♩:

Form MDIForm UserControl

Built-in controls ╖ ╖◖fi♩꜡כꜟ:

CheckBox ComboBox CommandButton

Data DirListBox Dr iveListBox

FileListBox Frame HScrollBar

Image Label Line

ListBox Menu OptionButton

PictureBox Shape TextBox

Timer VScrollBar

Windows Common controlsWindows Windows ◖fi♩꜡כꜟ:

Animation DTPicker FlatScrollBar

ImageCombo ImageList ListView

MonthView ProgressBar Slider

StatusBar TabStrip Toolbar

TreeView UpDown

Window-less controls ►▬fi♪►◖fi♩꜡כꜟ:

WLCheck WLCombo WLCommand

WLFrame WLHScroll WLList

WLOption WLText WLVScroll

Other controls ∕─ ─◖fi♩꜡כꜟ:

ADO Data CommonDialog DataCombo

DataList Mask EdBox PictureClip

Remote Data RichTextBox SSTab

SysInfo WebBrowser

ActiveX Components (invisible at runtime) ActiveX◖fiⱳכⱠfi♩():

INet MAPIMessage MAPISession

MSComm ScriptControl Winsocket

ActiveX Controls (visible at runtime) ActiveX◖fiⱳכⱠfi♩():

MMControl
MSCalendar

(MSCAL.Calendar)
MSChart

MSDataGrid MSHierarchicalFlexGrid

Notice that the list includes all the controls that are installed with Visual Basic 6, with the only exception of the

OLE container control and the Repeater control. (We plan to add support for the Repeater in a future version of this

support library.)

VisualBasic6 OLE

Version

In general, the name of all the classes in the control support library is formed by prefixing VB6 to the name of

the original VB6 control. For example, the VB6CommandButton control renders the VB6 CommandButton control,

and so on.

VB6 VB6

VB6CommandButton VB6 CommandButton

In most cases, a class that replaces a VB6 control inherits from a Windows Forms control and adds or overrides

members that behave exactly as they do under VB6. For example, the class that supports VB6 s TabStrip control

inherits from System.Windows.Forms.TabControl. This approach ensures that the converted VB.NET application

has no dependency from the original ActiveX control.

Windows VB6

VB6 VB6 TabStrip

System.Windows.Forms.TabControl VB.NET

ActiveX

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated%2520App.gif

Only the controls that belong to the ActiveX Components and ActiveX Controls groups listed above are

implemented as wrappers on the original ActiveX objects.

ActiveX ActiveX

ActiveX

If the original VB6 application uses one or more controls listed in the ActiveX Components group, then the

converted VB.NET project includes a reference to a TlbImp- generated DLL (for example MSCommLib for the MS

Comm control). If the original VB6 application uses one or more controls listed in the ActiveX Controls group, then

the converted VB.NET project includes a reference to the CodeArchitects.VBLibraryOCX.dll and

CodeArchitects.AxVBLibraryOCX.dll libraries:

VB6 ActiveX

VB.NET TlbImp DLL

MS Comm Control MSCommLib VB6 ActiveX

VB.NET

CodeArchitects.VBLibraryOCX.dll CodeArchitects.AxVBLibraryOCX.dll

Here is a list of relevant features that VB Migration Partner supports:

VBMigrationPartner

¶ Late binding Ᵽ▬fi♦▫fi◓

The fact that members of the VB.NET control have the same name, return type, and syntax as the

original VB6 control ensures that existing code accessing the control in late -bound mode continues

to work after the migration to VB.NET.

VB.NET ◖fi♩꜡כꜟ─ⱷfiⱣ│ ∂ ⁸ ╡ ─ ╩ ⇔⁸∕⇔≡○ꜞ☺♫ꜟ VB6 ◖fi♩꜡כ

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_References.gif

ꜟ─ │ Late -Bound ⇔☻☿◒▪⌐ꜟכ꜡♩fi◖≢♪כ⸗ ↑⁸VB.NET ⌐ ↕╣√ ╙ ⇔

↑╢≤™℮↓≤╩ ⇔╕∆⁹

¶ Standard and popup menus ☻♃fi♄כ♪ⱷ♬ꜙכ≤ⱳ♇ⱪ▪♇ⱪⱷ♬ꜙכ

Standard and popup menus are fully supported, including shortcut keys and control arrays of menu

items.

☻♃fi♄כ♪ⱷ♬ꜙ⁸כⱳ♇ⱪ▪♇ⱪⱷ♬ꜙכ│ ⌐◘ⱳ⁸כ◐♩♇◌♩כꜛ◦⁹∆╕™≡╣↕♩כ

ⱷ♬ꜙכ▪▬♥ⱶ─◖fi♩꜡כꜟ ╙◘ⱳ⁹∆╕⇔♩כ

¶ Control arrays ◖fi♩꜡כꜟ

All control array features are supported, including dynamic loading and events. Support is

provided by means the VB6ControlArray(Of T) type. Because of the generic nature of this type, VB

Migration Partner supports arrays of any controls, including 3rd party controls. Arrays of menu

items are supported as well.

╛▬ⱬfi♩╩ ╗ ≡─◖fi♩꜡כꜟ ╩◘ⱳ⁹∆╕™≡⇔♩כ◘ⱳכ♩│

VB6ControlArray ─♃▬ⱪ⌐╟╢ ≢∆⁹↓─♃▬ⱪ─ ⌂ ─√╘⌐⁸

VBMigrationPartner │ rdParty ◖fi♩꜡כꜟ╩ ╗ ─◖fi♩꜡כꜟ ╩◘ⱳ⁹∆╕⇔♩כⱷ

─ⱶ♥▬▪כꜙ♬ ╙◘ⱳ⁹∆╕™≡⇔♩כ

¶ Dynamic con trol creation ⌂◖fi♩꜡כꜟ─

In addition to loading a control by means of a control array, the CodeArchitects.VBLibrary DLL

fully supports the Controls.Add method. The return value from this method can be assigned to a

VBControlExtender variable, and VB.NET code can handle the ObjectEvent event exactly as the

original VB6 code does.

◖fi♩꜡כꜟ ─◖fi♩꜡כꜟ╩ ╖ ╗↓≤⌐ ⅎ≡⁸CodeArchitects.VBLibrary DLL │

Controls.Add ⱷ♁♇♪╩ ⌐◘ⱳ⁹∆╕™≡⇔♩כ↓─ⱷ♁♇♪⅛╠─ ╡ │

VBControlExtender ⌐ ∆╢↓≤⅜≢⅝╕∆⁹∕⇔≡ VB.NET │♪כ◖ ObjectEvent ▬ⱬfi♩

╩○ꜞ☺♫ꜟ─ VB6 ≥♪כ◖ ∂ↄ ⌐ ↕∑╢↓≤⅜≢⅝╕∆⁹

¶ Graphic methods ◓ꜝⱨ▫♇◒ⱷ♁♇♪

Cls, Line, Circle, PaintPicture, PSet, Point, Print, Scale, TextWidth, and TextHeight methods are

supported for the Form, PictureBox, and UserControl classes. All graphics -related properties are

fully supported (in cluding AutoRedraw and persistent graphic), except ClipControls and

DrawMode. The PrintForm method is supported, too.

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Popup.gif

Cls, Line, Circle, PaintPicture, PSet, Point, Print, Scale, TextWidth, TextHeight ⱷ♁♇♪│ Form,

PictureBox, UserControl ◒ꜝ☻╩◘ⱳ⁹∆╕⇔♩כ ≡─◓ꜝⱨ▫♇◒ ⱪ꜡Ɽ♥▫│ ⌐◘ⱳ

⁹∆╕™≡╣↕♩כ AutoRedraw ≤ ◓ꜝⱨ▫♇◒╩ ╗ √∞⇔⁸ClipControls ≤ DrawMode

╩ ↄ⁹PrintForm ⱷ♁♇♪│◘ⱳ⁹∆╕╣↕♩כ

¶ Coordinate systems ⱶ♥☻◦♩כⱠ▫♦כ◖

ScaleMode property can be set to values other than vbTwips, both at design -time and at run -time;

ScaleLeft, ScaleTop, ScaleWidth, and ScaleHeight properties and Scale, ScaleX, and ScaleY

methods are supported as well.

ScaleModeⱪ꜡Ɽ♥▫│ vbTwips⁸♦◙▬♫כ≤ ─ ≢ ╩☿♇♩∆╢↓≤⅜≢⅝╕∆⁹

ScaleLeft⁸ScaleTop⁸ScaleWidth⁸ScaleHeight ⱪ꜡Ɽ♥▫≤ Scale⁸ScaleX⁸ScaleYⱷ♁♇♪│◘

ⱳ⁹∆╕™≡⇔♩כ

¶ Data binding ◓Ᵽ▬fi♦▫fi♃כ♦

The control library supports binding with the Data, RDO Data, and ADODC controls, perfectly

reproducing the VB6 behavior, including custom formatting by means of the StdDataFormat object

and its Parse and Format events. VB Migration Partner supports also bi nding to ADO Recordsets,

DataEnvironment objects, ADO data source classes, ADO simple data consumer classes, and

BindingCollection objects.

◖fi♩꜡כꜟꜝ▬Ⱪꜝꜞ│ StdDataFormat ○Ⱪ☺▼◒♩≤∕─ ≤ⱨ◊כⱴ♇♩▬ⱬfi♩─◌☻♃

ⱶ ╩ ╖ VB6 ─ ╩ ⌐ ╩♃כ♦⇔ RDO ⁸ADODC♃כ♦ ◖fi♩꜡כꜟ≢ ∆╢↓

≤╩◘ⱳ⁹∆╕⇔♩כVBMigrationPartner │ ADO Recordsets⁸DataEnvironment ○Ⱪ☺▼◒♩⁸

ADO Data Source ◒ꜝ☻⁸ADO simple data consumer ◒ꜝ☻⁸BindingCollection ○Ⱪ☺▼◒♩≢♦

♃כ ∆╢↓≤╙◘ⱳ⁹∆╕⇔♩כ

¶ Er ror codes ♪כ◖כꜝ◄

When the support library throws an error, the error is raised by means of the Err.Raise method

(rather than a Throw statement). Care has been taken in using exactly the same error codes that

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Graph_App.gif

would be produced in VB6. This detail is essenti al to ensure that existing VB6 error handlers work

correctly after the migration to VB.NET.

◘ⱳכ♩ꜝ▬Ⱪꜝꜞ⅜◄ꜝכ꜡☻╩כ⇔√ │כꜝ◄⁸⌐ Err.Raise ⱷ♁♇♪ Throw ♩ⱷfi♩כ♥☻

≢│⌂™ ⌐╟╡⁸ ↕╣╕∆⁹VB6 ≢ ≥♪כ◖כꜝ◄╢™≡╣↕ ∂╙─╩ ∆╢↓≤≢⁸

╩כꜝ◄ ⅎ╢↓≤⅜≢⅝╕∆⁹↓─ │ VB.NET ⌐ ↕╣√ ≢⁸ ─ VB6 ꜝ♪Ɫfiכꜝ◄

╩ ⇔ↄ ∆╢↓≤╩ ∆╢↓≤│ ≢∆⁹

¶ Enum properties ⱪ꜡Ɽ♥▫

All enumerated values have retained the value they have in VB6. This feature ensures that if an

enum property is assigned a value returned by a Function or read from a configuration file, such a

piece of code continues to work as expected after the migration to VB.NET. Spaces in enumerated

values Έ as in [Test Value] Έ are replaced by underscores.

≡─ ↕╣√ │⁸VB6 ≢ ∫≡™╢ ╩ ⇔╕∆⁹↓─ │ Function ╕√│ ⱨ□▬ꜟ

⅛╠ ╕╣ ↕╣√ ⅜ Enum ⱪ꜡Ɽ♥▫⌐ ╡ ⅜♪כ◖─≈≥└⌂℮╟─⧵⁸╠⌂╢╣╠≡

VB.NET ⌐ ↕╣√ ≢ ↕╣√╟℮⌐ ⇔ ↑╢↓≤╩ ⇔╕∆⁹ ─ ─☻Ɑכ☻│

▪fi♄כ☻◖▪⌐ ↕╣╕∆⁹ ₈TEST VALUE ₉⁸ ₈TEST_VALUE ₉

¶ Help support HELP

All the help -related properties and methods are supported, including HelpContextID and

WhatsThisHelpID. The converted VB.NET program can continue to use the help file provid ed with

the original VB6 application.

≡─ HELP ─ⱪ꜡Ɽ♥▫≤ⱷ♁♇♪│ HelpContextID ≤WhatsThisHelpID ╩ ╖◘ⱳכ♩↕

╣╕∆⁹ ↕╣√ VB.NET ⱪ꜡◓ꜝⱶ│○ꜞ☺♫ꜟ VB6 ▪ⱪꜞ◔כ◦ꜛfi≢ ↕╣√ HelpFile

╩ ™ ↑╢↓≤⅜≢⅝╕∆⁹

1.4 Pragmas and the "convert- test- fix" cycle convert- test- fix

Pragmas are special remarks that developers can add to the VB6 code to affect the behavior of the VB Migration

Partner. The parser considers as a pragma any comment that starts with the ## sequence; if the pragma name

isn t recognized, a warning appears in the Log Activity window.

VBMigrationPartner VB6

##

Log Activity Window

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Help.gif

Pragmas encourage the process we call convert- test- fix cycle. The convert- test- fix cycle is essential in

converting large VB6 applications that need to be maintained or expanded until the migration process is completed

and the VB.NET application is ready for the market. For large applications, in fact, the easiest way to ensure that

the VB6 and VB.NET versions are always in- sync is doing as much work as possible on the original VB6 code and

annotating it with pragmas. These pragmas tell VB Migration Partner how to migrate given pieces of code without

producing errors.

Pragmas convert- test- fix - -

VB6 VB.NET

VB6 VB.NET

VB6 VB

Migration Partner

A key feature of pragma is that they can be scoped at the project, class, method, and variable level. Project- level

pragmas can appear anywhere in the VB6 source code and use the project: prefix. For example, the following

pragma tells the code generator to use the Arial 10pt font for all the forms in the current project, unless another

FormFont pragma at the form level overrides it:

Pragma

VB6 project:

Arial 10pt

FormFont

 '## project:FormFont Arial, 10

Pragma arguments are separated by commas; if an argument is a string literal that contains commas, it must be

enclosed in double quotes. If an argument contains a command and a double quote character (in a remark, for

example), it must be enclosed in double quotes and all double quotes in the original value must be doubled, as you

would do if it were a VB literal string.

VB

There are a few of exceptions to the above rule, most notably the InsertStatement, ReplaceStatement, Rem, and

Note pragmas. These pragmas take just one argument, which is an entire VB.NET statement, and never require that

their only argument be enclosed in double quotes, because the comma cant be misinterpreted as an argument

separator.

InsertStatement ReplaceStatementRem Note

VB.NET

A pragma can be applied to a specific member by prefixing its name with the member name, using the dot syntax.

For example, the following VB6 code snippet applies the DeclareImplicitVariables pragma to the Test method (this

pragma forces VB Migration Partner to generate a Dim statement for each variable that is implicitly declared):

VB6 Test DeclareImplicitVariables

Dim VB Migration Partner

 '## Test.DeclareImplicitVariables True

 Ν

 Sub Test()

 Ν

 End Sub

You use the dot syntax to refer to specific variables, if the pragma can be applied to a variable. The following

code tells the code generator to consider the frm variable as an auto- instancing variable (in this case VB Migration

Partner generates code that preserves the As New semantics):

frm VB Migration

Partner As New

 '## frm.AutoNew True

 Dim frm As New Form1

If a pragma isnt prefixed by project: or by a member name, its scope depends on where it appears in the VB6 code.

The scoping rules are the same as in VB6: if the pragma appears at the class- , form- , or module- level - that is, it

isn t inside a method - it affects the entire form, module, or class and all its members; if the pragma appears inside

a method, then it affects the current method and all its local variables:

Project: VB6

VB6 Pragma class- form- module- level

Form

Pragma

 Sub Test()

 ' this pragma affects all local variables in Test method

 '## AutoNew True

 Ν

 End Sub

The effect of a pragma can be overridden by a pragma with a narrower scope. For example, you can use a

project- level AutoNew pragma that affects all the fields and variables, except those that are affected by AutoNew

pragmas at the class, method, or variable level. This hierarchical mechanism adds a lot of flexibility and lets

developers precisely define the outcome from VB Migration Partner with few additions to the original VB6 code.

AutoNew

AutoNew VB

Migration Partner VB6

VB Migration Partner checks the syntax of all pragmas and doesnt support pragmas with arbitrary names; however,

we provide a one- size- fits- all pragma named SetTag, which developers can use to associate values to code

entities. The SetTag pragma is especially useful with extensions.

VB Migration Partner

SetTag

SetTag

You can easily insert new pragmas by means of a dialog box that explains what each pragma does and what each

argument means, and that ensures that the syntax is correct.

In addition to processing pragmas in VB6 source code files, VB Migration Partner looks for the following files:

VB6 VB Migration Partner

1. A file named VBMigrationPartner.pragmas , in VB Migration Partner ΐs main directory. (This is

known as the "master" pragma file.)

VBMigrationPartne r ─ⱷ▬fi♦▫꜠◒♩ꜞ⌐ ∫≡™╢⁸VBMigrationPartner.pragmas ≤™℮

─ⱨ□▬ꜟ⁹ ↓╣│₈ⱴ☻♃₉כⱪꜝ◓ⱴⱨ□▬ꜟ≢∆

2. A file named after the project ΐs file and with the .pragmas extensions - for example,

Widgets.vbp.pragmas for the Widgets.vbp project.

ⱪ꜡☺▼◒♩ⱨ□▬ꜟ ─ ⌐.pragmas ≢ ↑╠╣╢ⱨ□▬ꜟ⁹ Widgets.vbp ⱪ꜡☺▼◒

♩≢│Widgets.vbp.pragmas

3. A file named VBMigrationPartner.pragmas , in the same directory as the project ΐs .vbp file. (This

file is processed only if the search for previous file fails.)

ⱪ꜡☺▼◒♩─.vbp ⱨ□▬ꜟ≤ ∂♦▫꜠◒♩ꜞ⌐№╢ VBMigrationPartner.pragmas ≤™℮ ─

ⱨ□▬ꜟ⁹ ─ⱨ□▬ꜟ─ ⅜ ⇔√≤⅝─╖⁸↓─ⱨ□▬ꜟ⅜ ↕╣╕∆⁹

Storing project- level pragmas inside these files is necessary or convenient in two cases. First, you can store

project- level PreProcess, ImportTypeLib, and AddLibraryPath pragmas only inside these files. Second, this

mechanism allows you to easily share pragma among different projects.

PreProcess ImportTypeLib AddLibraryPath

For example, you can ensure that all the form fonts in multiple projects are converted in the same way by creating

a file named VBMigrationPartner.pragmas containing this text:

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Pragmas.gif

VBMigrationPartner.pragmas

 '## FormFont Arial, 10

and then copying it to all the directories that contain the projects you plan to convert. Notice that the project:prefix

is optional for pragmas stored in *.pragmas files.

*.pragmas project:

Keep in mind that the master pragma file in VB Migration Partners main directory (step 1) is always processed,

whereas the VBMigrationPartner.pragmas file in the VB6 projects folder (steps 3) is processed only if the search

at step 2 fails. The order in which these files are processed ensures that the settings in files inside the projects

folder can override the settings specified in the master pragma file. For example, if both the master pragma

file and the pragma file in the projects folder contain an ImportTypeLib pragma that refers to the same type library,

the setting specified in the latter file wins.

VB Migration Partner Step1

VB6 Step3 VBMigrationPartner.pragmas Step2

ImportTypeLib

2. Using VB Migration Partner VB Migration Partner

¶ 2.1 Loading the VB6 project VB6

¶ 2.2 Converting to VB.NET VB.NET

¶ 2.3 Compiling the VB.NET solution VB.NET

¶ 2.4 Fixing the VB6 code VB6

¶ 2.5 Launching Visual Studio Visual Studio

¶ 2.6 Using code analysis features

¶ 2.7 Using assessment features

¶ 2.8 Customizing the code window

2. Using VB Migration Partner VB Migration Partner

VB Migration Partner requires that Microsoft Visual Studio 2005 or Visual Studio 2008 be installed on the local

computer. We recommend that you run the migration process on the same computer where you developed and

tested the original VB6 application, therefore also Visual Basic 6 must be installed on the local computer.

VB Migration Partner Microsoft Visual Studio 2005 Visual Studio 2008

VB6

Visual Basic 6

Using the program is quite simple and revolves around a few simple actions that can be reached from the toolbar.

2.1 Loading the VB6 project VB6

Select the File- Open menu command or click the Open toolbar button to load a VB6 project (.vbp) or project group

(.vbg). If the project was written with a version of VB6 prior to VB6 you must convert it to VB6 before attempting

the conversion. If the loaded file isnt recognized as a VB6 project or project group a message error is displayed.

File Open Open VB6 .vbp

.vbg VB6 Version

http://www.infortech.co.jp/product/vbmp_translated_manual_chapter2.html#2

VB6 VersionUp VB6

If the EXE or DLL file created by compiling the VB6 project is present, VB Migration Partner compares its datetime

stamp with the datetime stamp of all the files in the project. If the executable file is older than any of the

corresponding source files, VB Migration Partner displays a warning.

VB6 EXE DLL VB Migration Partner

DateTime Source

VB Migration Partner

Warning: We strongly recommend that you always recompile the original VB6 project before attempting the

conversion to VB.NET and ensure that the VB6 code doesnt contain syntax errors. While VB Migration Partner is

able to spot such errors and solve them in most cases, in some cases these errors might cause invalid VB.NET

code to be emitted and even crash VB Migration Partner.

VB.NET VB6

VB Migration Partner

VB.NET

VB Migration Partner

Note: you can suppress the display of this message box by selecting the corresponding option in the General tab of

the Tools- Options window.

Tools Options General

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Message.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Options.gif

2.2 Converting to VB.NET VB.NET

Select the Build- Convert to VB.NET menu command or click the Convert toolbar button to start the conversion

process. Each source file undergoes three distinct migration stages: the parsing stage, the processing stage, and

the conversion stage. During the process an activity log is created, so that you can watch which files are being

converted.

Build Convert to VB.NET Convert

When the migration process is over, a few new tabs appear in the rightmost pane of VB Migration Partners main

window:

VB Migration Partner

¶ the VB.NET Code tab shows how the code in the currently selected file has been migrated

VB.NET Code

¶ the Warnings tab shows all the warnings and issues for the entire project or file that is currently selected

War ings

¶ the Metrics tab shows code statistics for the entire project or file that is currently selected

Metrics

The Migration Result pane displays the list of all the issues, warnings, info, and to- do messages that have been

emitted as special remarks in the VB.NET code. You can filter these messages by clicking on one of the four tabs at

the top of this pane and you can double- click a message to quickly jump to the code portion where the message

has been emitted.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Activity_Log.gif

Migration Results VB.NET Issues Warnings ToDos Information

2.3 Compiling the VB.NET solution VB.NET Solution

Select the Build- Compile Entire Solution menu command or click the Compile toolbar button to compile all the

projects in the current solution to VB.NET without leaving VB Migration Partner. You can also compile individual

projects, by means of the Build- Compile Selected Project menu command. Build Compile Entire Solution

Compile Solution

VB.NET VB Migration Partner Build

Compile Selected Project

Before running the actual compilation, VB Migration Partner has to save VB.NET source code files to disk. By

default, these files are stored in a folder in the same directory as the folder that contains the original VB6 project;

the name of the new folder is obtained by appending _NET to the name of the original folder. You can modify

such default behavior in the Save tab of the Tools- Options dialog.

VB Migration Partner VB.NET

VB6

_NET Tools

 Options Save

Before proceeding, VB Migration Partner displays a dialog that allows you to select a different directory:

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Migration_Result.gif

VB Migration Partner

If the target directory already exists and contains files presumably created by a previous migration attempt

VB Migration Partner displays a message box that asks you to confirm the selection.

VB Migration Partner

If the default choice is OK, you can tell VB Migration Partner not to display the dialog by enabling the Automatically

Select Output Folder For VB.NET Solutions option, in the Tools- Options window. Likewise, you tell VB Migration

Partner not to display the message box by enabling the Automatically Overwrite Existing Output Folder option, in

the same window.

OK Tools Options Save Options

Automatically select output folder for VB.NET solutions

VB Migration Partner Automatically overwrite existing

output folder

Once the compilation process is completed, you can browse all the errors and warnings from the VB.NET compiler

in the Compilation Results pane, near the bottom border.

Compilation Results VB.NET

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Save.gif

Note: the compilation process is optional, especially when migrating a simple VB6 project or a project that you have

already migrated previously and that has been already fixed to avoid compilation errors. In such cases you can

directly load the converted code in Microsoft Visual Studio.

VB6

Microsoft Visual Studio

Alternatively, you can direct VB Migration Partner to compile the VB.NET code immediately after the migration

process, by means of the Automatically Build VB.NET Solution After Migration option, in the Tools- Option window.

You have the option to compile unconditionally or only if the conversion process generated fewer errors, warnings,

and issues than a threshold that you specify.

Tools Options General Automatically build

for VB.NET solution after migration VB.NET

VB Migration Partner

2.4 Fixing the VB6 code VB6

Except for trivial applications, you never come up with a working VB.NET application at the first attempt. Migrating

VB6 code to the .NET Framework platform is better described as an iterative process: you are expected to go back

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Compilation_Results.gif

to the original application, edit it to fix all the migration and compilation errors and issues, and convert the code

once again. This is the so- called convert- test- fix cycle.

VB.NET

VB6 .NET Framwork Platform

convert- test- fix

If the converted application has one or more compilation errors you should probably insert one or more pragmas in

the original VB6 code. You can do so by selecting the VB6 Code tab and the Edit- Insert Pragma menu command or

by clicking on the Insert Pragma toolbar button. This action displays the Insert Pragmas dialog, which assists you in

picking up the right pragma and assigning the right arguments. When you click the OK button, the dialog is closed

and the actual pragma is inserted at the current position in the VB6 code.

Pragmas VB6 VB6 Code Edit Insert

Pragma Insert Migration Pragma

Insert Pragmas Pragma

OK VB6 Pragma

If you have added one or more pragmas, or have modified the original VB6 code in any way from inside VB

Migration Partner, you should now save the new files to disk, by selecting the File- Save- Save VB6 Files menu

command or by clicking on the Save toolbar button.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Insert_Pragma.gif

Pragma VB Migration Partner VB6

File Save Save VB6 Files Save

Alternatively, if you have modified the original VB6 code from outside VB Migration Partner For example, from

inside Microsoft Visual Basic 6 IDE or from an external editor you can reload the project or project group by

selecting the File- Reload menu command or by clicking on the Reload toolbar button.

VB6 VB Migration Partner

Microsoft Visual Basic 6 IDE File Reload

Reload Project Project Group

2.5 Launching Visual Studio VisualStudio

When you are satisfied of the results from the migration process you can load the converted VB.NET solution inside

Microsoft Visual Studio, by selecting the Tools- Run Microsoft Visual Studio menu command or by clicking the Load

the generated VB.NET code in Microsoft Visual Studio toolbar button.

Migration Tools Run Microsoft Visual Studio

Load the generated VB.NET ode in Microsoft Visual Studio VB.NET

Solution Microsoft Visual Studio

VB Migration Partner displays the dialog box that allows you to select the target folder as for the Compile to

VB.NET command then it launches Microsoft Visual Studio and loads the converted VB.NET in it.

VB Migration Partner VB.NET

Microsoft Visual Studio VB.NET

The first thing to do at this point is checking all the errors and warnings in Visual Studios Error List window, and

then all the items in the Task List window.

Visual Studio Error List

Task List

VB Migration Partner can generate for different type of comments in the converted application:

VB Migration Partner

¶ UPGRADE_ISSUE: serious migration issues that you should solve immediately

UPGRADE_ISSUE

¶ UPGRADE_WARNING: migration warnings that might or might not affect the converted application

UPGRADE_WARNING

¶ UPGRADE_TODO: suggestions about how to manually edit the migrated code to avoid a potential problem

UPGRADE_TODO

¶ UPGRADE_INFO: information about the generated VB.NET code, including information about unused constant

and methods and recommendations about the .NET type or methods that can replace a Declare statement.

UPGRADE_INFO VB.NET

.NET

By default, only warnings and to- do comments appear in Visual Studios Task List pane. We suggest that you use

the Tools- Options command to add the UPGRADE_ISSUE comment to the list of comments that the Task List

recognizes and set its importance to High.

ToDo Visual Studio .NET

 UPGRADE_ISSUE

If there are no compilation errors you can run the VB.NET application and see how it behaves. Its unlikely that a

complex application runs smoothly at the first attempt, therefore be prepared for runtime exceptions. We

recommend that you enable the option Break When An Exception Is Thrown in the Debug- Exceptions dialog box, so

that you immediately catch unexpected runtime errors that would go unnoticed because of an On Error statement.

VB.NET

 Common Language

Runtime Exceptions On

Error Statement

http://www.infortech.co.jp/product/chapter2.files/VS_Options.gif

2.6 Using code analysis features

At the end of the conversion process VB Migration Partner displays a detailed report in the Metrics tab in the right

portion of the main window.

VB Migration Partner Metrics

1. Select an item in the tree on the left, to display code metrics at the solution, project, or file level.

Solution Project File

2. Select an item from the combobox to further restrict the report to just forms, classes, public or private

members, methods or properties, and so forth.

3. Select an item in the grid to see a more detailed report in the lower area of the Metrics tab.

Metrics

4. Sort the items in the grid in either ascending or descending order, by clicking on a column header.

The sorting feature is especially useful when focusing on the most problematic portions of the VB6 solution to be

converted. For example, you can sort all methods on their cyclomatic index in descending order to immediately find

the most complex methods in the application.

VB6

Cyclomatic Index

http://www.infortech.co.jp/product/chapter2.files/VS_Exceptions.gif

The Metrics tab of the Tools- Options dialog allows you to configure which code metrics appear in the grid and in

the area underneath the grid.

Tools - > Options Options Metrics

The name of most code metrics values is self- explanatory, but a few might require an explanation.

¶ Total Lines is the sum of all code lines in the file, project, or solution. It includes the lines in the hidden portion

of .frm and .ctl files.

Total Lines File Project Solution .frm .ctl

¶ Code Lines is the number of lines that contain actual executable code; it doesnt include empty and remark

lines (which are counted by separate code metrics).

Code Lines

¶ Remark to Code Lines Ratio provides a broad measure of how well the original VB6 project is documented; the

higher this value, the better.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Metrics.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Options_Metrics.gif

Remarks to Code Lines Ratio VB6

¶ Implicit Local Variables is the number of local variables that arent explicitly declared; they are typically

converted as Object variables, therefore you might need to add the original VB6 code to use a more efficient

type.

Implicit Local Variables

VB6

¶ Variant Variables is the number of Variant variables; they are migrated as Object variables, therefore it is

recommend that you carefully scrutinize each of them and change them to a more efficient type if possible, or

possibly use a SetType pragma to convert them to VB6Variant variables.

Variant Variables

VB6Variant

SetType Pragma

¶ Fixed Length Variables is the number of fixed- length strings. By default they are converted to instances of the

VB6FixedLength class, but you might want to edit the original VB6 code (or use a UseSystemString pragma) to

transform them into regular string.

Fixed Length Variables VB6FixedLength

String VB6

UseSystemString Pragma

¶ Auto- Instancing Variables is the number of variables declared with the As New keyword. These variables

have a different semantics in VB.NET and might behave differently.

Auto- Instancing Variables As New VB.NET

¶ Non- Zero Bound Array Variables is the number of arrays whose lower index is nonzero; such arrays require a

pragma to compile correctly under VB.NET.

Non- Zero Bound Array Variables Index Non- Zero VB.NET

Pragma

¶ Gotos, Gosubs, On Gotos and Gosubs are the total number of GoTo keywords, GoSub keywords, and

calculated GoTo/GoSub keywords, respectively. VB.NET supports the GoTo keyword and VB Migration

Partner generates code that simulates GoSubs and calculated GoTo/GoSub; nevertheless, it is strongly

recommended that you edit the original VB6 application to get rid of them.

Gotos, Gosubs, On Gotos and Gosubs Goto Gosub GoTo/GoSub

VB.NET GoTo VB Migration Partner

GoSubs GoTo/GoSub

VB6

¶ On Errors and Resumes are the number of On Error statements and of Resume/Resume Next statements.

VB.NET supports them, but you should replace them with more structured and efficient Try Catch blocks.

On Errors and Resumes On Error Resume/Resume Next VB.NET

Try Catch

¶ File Operations is the number of Open, Get#, Put#, and other file- related statements. These keywords dont

behave in exactly the same way in VB6 and VB.NET and VB Migration Partner doesnt automatically account

for all these differences, therefore you might need to carefully test each of them.

File Operations Open Get# Put#

VB6 VB.NET VB Migration Partner

¶ Exit Points is the number of Exit Sub, Exit Function, and Exit Property keywords. This value is included in the

code metrics report because many developers prefer to have a single exit point for each method.

Exit Points Exit Sub Exit Function Exit Property

Exit

¶ Cyclomatic Index is the number of all possible code execution paths in a method and is therefore equal to the

number of tests that should be performed to prove that the method behaves correctly in all situations. When

evaluated at the file, project, or solution level it returns the sum of cyclomatic index of all contained methods

and therefore can be assumed as a broad measure of the overall complexity of that file, project, or solution.

Cyclomatic Index

File Project Solution

File Project Solution

¶ Nesting Level is the maximum nesting level of blocks inside a method. For example, a method that contains a

For loop that contains an If block has a nesting level equal to 2. When evaluated at the file, project, or solution

level it returns the sum of nesting level of all contained methods.

Nesting Level For Loop

File Project Solution

¶ If Directives is the number of #If, #ElseIf, and #Else keywords. VB Migration Partner is capable to evaluate #If

conditions and converts only the portion of code that is contained in the true portion of the #If block. All

other sections must be converted manually, therefore it is a good idea to revise the original VB6 application

and ensure that #If and #Const expressions exactly define the code that you want to convert.

If Directives #If #ElseIf #Else VB Migration Partner If

If True

VB6 #If #Const

2.7 Using assessment features

If the VB6 project has been already converted, VB Migration Partner can generate an assessment report and

export it Microsoft Excel. The report contains detailed information about each project in the original application,

including code metrics, number of migration issues and warnings, and an estimation of time (and money) required to

complete the conversion process.

VB6 VB Migration Partner Microsoft

Excel Project

Run the assessment feature by selecting the Tools- Generate Assessment Report menu command or by clicking on

the Assessment toolbar button.

Tools Generate Assessment Report Generate the assessment report

VB Migration Partner lets you select the name of the target Microsoft Excel file and then creates the assessment

report. This step can take several seconds, or even minutes, for long and complex VB6 applications. At the end of

the process a message box allows you to load the generated report inside Microsoft Excel.

VB Migration Partner Microsoft Excel

VB6 Microsoft Excel

The first worksheet generated Microsoft Excel file provides a summary of estimated costs for the entire application.

If the VB6 application contains two or more project, a separate worksheet is generated for each project.

Microsoft Excel

VB6 Project

Project

The Config Resources worksheet allows you to define five different developer roles and assign a different

hourly cost to each of them. The predefined roles are Project Manager, Architect, Junior Developer, Senior

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Assessment.gif

Developer, and Senior Tester, but you can change their name and cost as you see fit. (You can also add more roles,

if you are an expert Microsoft Excel user.)

Config Resources

Microsoft Excel

The Config Migration Warnings worksheet is where you configure how many minutes it takes for each

developer role to fix a given issue or warning message. Each message is identified by an obscure hexadecimal ID,

but you can read its description in the rightmost column.

Config Migration Warnings

16 ID

Finally, in the Config Code Tasks you configure the duration (in minutes) for tasks that arent related to

specific migration error and warning messages for example, the time required to check 100 lines of code to

ensure that they have been migrated correctly.

Config Code Tasks

100

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Roles.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Costs.gif

After configuring a report according to your preferences, you should save it to a different Microsoft Excel file, so

that you can reuse it as a template for subsequent assessments either for the same or a different VB6 project.

You select which template should be used in the Assessment Report tab of the Tools- Options dialog box.

Microsoft Excel Project

VB6Project Tools Options

Reports

2.8 Customizing the code window Window

You can customize the colors used by the VB6 and VB.NET code windows from inside the Code Editor tab in the

Tool- Options dialog box.

Tools - > Options Code Editor VB6 VB.NET Window

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Task_Costs.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Assessment_Options.gif

3. Converting Language Elements

¶ 3.1 Array bounds ─

¶ 3.2 Default members ⱷfiⱣ

¶ 3.3 GoSub, On GoTo, and On GoSub keyword GoSub≤ On GoTo≤ On GoSub

¶ 3.4 Fixed -length strings (FLSs)

¶ 3.5 TypeΝEnd Type blocks (UDTs) TypeΝEnd Type Ⱪ꜡♇◒ כ◙כꜚ

¶ 3.6 Auto -instancing variables ▬fi☻♃fi☻

¶ 3.7 Declare statements

¶ 3.8 Variant and Control variables Ᵽꜞ▪fi♩ ≤◖fi♩꜡כꜟ

¶ 3.9 Classes and Interfaces ◒ꜝ☻≤▬fi♃כⱨ▼כ☻

¶ 3.10 Finalization and disposable classes ≤ disposable◒ꜝ☻

¶ 3.11 ActiveX Components ActiveX ◖fiⱳכⱠfi♩

¶ 3.12 Persistable classes ◒ꜝ☻

¶ 3.13 Resources ☻כ♁ꜞ

¶ 3.14 Minor language differences ↕⌂ ─

¶ 3.15 Unsuppo rted features and controls ◘ⱳכ♩↕╣⌂™ ≤◖fi♩꜡כꜟ

¶ 3.16 The VB6Config class VB6Config ◒ꜝ☻

3. Converting Language Elements

This section illustrates how VB Migration Partner converts VB6 language elements and how you can apply pragmas

to generate better VB.NET code.

VB Migration Partner VB6 VB.NET

3.1 Array bounds

VB Migration Partner can adopt five different strategies when converting arrays with non- zero LBound. Developers

can enforce a specific strategy by means of the ArrayBounds pragma, as in:

VB Migration Partner LBound 5

ArrayBound

 ' all arrays in scope (class or method) must have LBound = 0

 ◒ꜝ☻⅛ⱷ♁♇♪ ─ ≡─ │ LBound=0⅜⌂↑╣┌⌂╡╕∑╪

 '## ArrayBounds ForceZero

 ' ...except the arr variable, which is declared as a VB6Array object

 VB6Array○Ⱪ☺▼◒♩ ≢ ↕╣√ arr ╩ ↄ

 '## arr.ArrayBounds VB6Array

Please notice that there is a minor but important limitation in how you can apply this pragma to an array variable: if

the array isn t explicitly declared by means of a Dim statement and is only implicitly declared by means of a ReDim

statement, pragma at the variable scope are ignored. An example is in order:

Dim ReDim

 Private Sub Test()

 '## ArrayBounds ForceZero '## arr.ArrayBounds VB6Array

 ReDim arr(1 To 10) As String

 Redim arr2(1 to 10) As Long

 End Sub

Both arrays are implicitly declared by means of a ReDim statement and lack of an explicit Dim keyword. The

abovementioned rules states that the second pragma (scoped at the variable level) is ignored, therefore both arrays

will be affected by the first pragma and will be forced to have a zero lower index:

ReDim Dim

 Private Sub Test()

 Dim arr() As String ' Implicitly declared array ⌐ ╩

 Dim arr2() As Int eger ' Implicitly declared array ⌐ ╩

 ReDim arr(10)

 ReDim arr2(10)

 End Sub

(This limitation is common to all pragmas that apply to array variables, not just the ArrayBounds pragma.)

ArrayBounds

Unchanged

The array is emitted as- is, and generates a compilation error in VB.NET if it has a nonzero lower bound. This is the

default setting thus you rarely need to use an ArrayBounds pragma to enforce this mode (unless you want to

override a pragma with broader scope).

.NET

ArrayBounds

ForceZero

When this option is selected, the arrays lower bound is changed to zero and the upper bound isnt modified. This

strategy is fine when the VB6 code processes the array using a loop such as this:

VB6

 For i = 1 To UBound(arr)

 Ν

 Next

Shift

VB Migration Partner decreases (or increases) both the lower and the upper bounds by the same value, in such a

way the LBound becomes zero. For example, consider the following VB6 fragment

VB Migration Partner LBound

VB6

 '## arr.ArrayBounds Shift

 Dim arr(LoIndex To HiIndex) As String

is translated as follows:

 Dim arr(0 To HiIndex - LoIndex) As String

This approach is recommended when it is essential that the number of elements in the array doesnt change after

the migration, and is the right choice when the VB6 code processes the array using a loop such as this:

VB6

 For i = LB ound(arr) To UBound(arr)

 Ν

 Next

Also, this is often the best strategy for arrays defined inside UDTs, if the UDT is often passed to a Windows API

method (in which case its essential that their size doesnt change).

WindowsAPI

VB6Array

If the array has a nonzero lower bound, VB Migration Partner replaces the array with an instance of the

VB6Array(Of T) generic class. For example, the following VB6 statements:

VB Migration Partner VB6Array of T

VB6 of T of Type

 '## ArrayBounds VB6Array

 Dim arr(1 To 10) As String

 Dim arr2(1 To 10, - 5 To 5) As Integer

 Dim arr3(0 To 10) As Long

are translated as follows:

 Dim arr As New VB6Array(Of String)(1, 10)

 Dim arr2 As New VB6Array(Of Short)(1, 10, - 5, 5)

 Dim arr3(0 To 10) As Integer

Instances of the VB6Array class behave much like regular arrays; they support indexes, assignments between

arrays, and For Each loops:

VB6Array For Each

 arr(1) = "abcde"

 For Each v In arr2

 sum = sum + v

 Next

Interestingly, when traversing a multi- dimensional array in a For Each loop, elements are visited in a column- wise

manner (as in VB6), rather than in row- wise manner (as in VB.NET), thus no bugs are introduced if the processing

order is significant.

For Each VB.NET

VB6

In order to support VB6Array objects - and for other reasons as well, such support for Variants VB Migration

Partner translates the LBound and UBound methods to the LBound6 and UBound6 methods, respectively. Likewise,

the Erase6, Redim6, and RedimPreserve6 methods are used to clear or resize arrays implemented as VB6Array

objects. (These methods are defined in the language support library CodeArchitects.VBLibrary.dll.)

VB6Array VBMigrationPartner

LBound UBound LBound6 UBound6 Erase6 Redim6 RedimPreserve6

VB6Array

CodeArchitects.VBLibrary.dll

VB Migration Partner fully honors the Option Base directive:

VB Migration Partner Option Base

 Option Base 1

 Ν

 '## ArrayBounds VB6Array

 Dim arr(10) As String

 numEls = UBound(arr)

which is translated as:

 Dim arr As New VB6Array(Of String)(1, 10)

 numEls = UBound6(arr)

Unfortunately, a syntactical limitation of VB.NET prevents from using a VB6Array object to hold an array of UDTs

(i.e. Structure blocks). More precisely, if a VB6Array contains structures, you can read a member of a structure

stored in the VB6Array but you cant assign any member. For example, consider the following VB.NET code:

VB.NET Structure

VB6Array VB6Array

VB6Array

VB.NET

 Structure MyUDT

 Public ID As Integer

 End Struct ure

 ...

 Sub Main()

 Dim arr As New VB6Array(Of MyUDT)(1, 10)

 Dim value As Integer = arr(1).ID

 ' reading a member is OK

 ⱷfiⱣ╩ ╗↓≤│≢⅝╕∆

 ' assigning a member causes the following compilation error

 ⱷfiⱣ─ ╡ ≡│◖fiⱤ▬ꜟ◄ꜝכ⌐⌂╡╕∆

 ' Expression is a value and therefore cannot be the target of an assignment.

 │ ≢⁸ ╡ ≡─ ⌐│⌂╡╕∑╪

 arr(1).ID = value

 End Sub

Therefore, in general you should avoid using the VB6Array option to convert an array of structures. However, this is

just a rule of thumb and there can be exceptions to it. For example, if your code assigns whole structures to array

elements (as opposed to individual structure members) and then reads their individual members, then storing

structures in a VB6Array object is fine.

VB6Array

VB6Array

ForceVB6Array

This option is similar to the previous one, except it applies to all arrays in the pragmas scope, regardless of

whether the array has a non- zero LBound. This option is useful when the array is declared and created in two

different steps in this case the parser cant decide which strategy to use by looking at the declaration alone - or

when the developer knows that the array is going to be passed to a method that exposes parameters of VB6Array

type. For example, consider this VB6 fragment:

LBound

VB6Array

VB6

 '## ArrayBoun ds VB6Array

 Dim arr() As String

 Sub Test()

 ReDim arr(1 To 10) As String

 End Sub

Remember that the VB6Array strategy applies only to arrays that have a nonzero lower index. However, when VB

Migration Partner parses the arr variable it can t decide whether it has a nonzero lower index, therefore it ignores

the pragma and renders the variable as a standard array (thus causing a compilation error). This is the correct way

to handle such a case:

VB6Array

VB Migration Partner arr

 '## ArrayBounds ForceVB6Array

 Dim arr() As S tring

 Sub Test()

 ReDim arr(1 To 10) As String

 End Sub

which is rendered as:

 Private arr As VB6Array(Of String)

 Public Sub Test()

 Redim6(arr, 1, 10)

 End Sub

Unlike other ArrayBounds options, you can apply the ForceVB6Array strategy to methods parameters and return

values, either with a pragma inside the method with no explicit scope or with a pragma outside the method but that

is scoped opportunely:

ArrayBound ForceVB6Array

 Function GetValues(arr() As String) As Integer()

 '## ArrayBounds ForceVB6Array

 Dim res() as Integer

 Ν

 GetValues = res

 End Function

 '## InitArray.ArrayBounds ForceVB6Array

 Function InitArray() As Integer()

 Ν

 End Function

which is translated as follows:

 Function GetValues(arr As VB6Array(Of String)) As VB6Array(Of Short)

 Dim res As New VB6Array(Of Short)

 Ν

 Return res

 End Function

 Function InitArray() As VB6Array(Of Short)

 Ν

 End Function

When dealing with arrays having nonzero lower bound, another pragma can be quite useful. Consider the following

VB6 code:

VB6

 Dim primes(1 To 10) As Long

 primes(1) = 1: primes(2) = 2: primes(3) = 3: primes(4) = 5: primes(5) = 7

 primes(6) = 11: primes(7) = 13: primes(8) = 17: primes(9) = 19: primes(10) =

23

You can use an ArrayBounds pragma to force a zero lower bound or to shift both bounds toward zero, but you need

a separate ShiftIndexes pragma to account for the indexes used in the last two lines:

ArrayBound

ShiftIndexes

 '## primes.ArrayBounds Shift

 '## primes.ShiftIndexes false, 1

 Dim primes(1 To 10) As Long

 primes(1) = 1: primes(2) = 2: primes(3) = 3: primes(4) = 5: primes(5) = 7

 primes(6) = 11 : primes(7) = 13: primes(8) = 17: primes(9) = 19: primes(10) =

23

this is the result of the migration to VB.NET:

VB.NET

 Dim primes(9) As Integer

 primes(0) = 1: primes(1) = 2: primes(2) = 3: primes(3) = 5: primes(4) = 7

 primes(5) = 11: primes(6) = 13: primes(7) = 17: primes(8) = 19: primes(9) = 23

The first argument of the ShiftIndexes is False if the delta value specified in the second argument must be applied

only to constant indexes, True if the delta value must be applied even when the index is a variable or an expression.

Using True or False makes a difference when the array is referenced from inside a loop. Consider this example:

False

True ShiftIndexes

True False

 '## powers.ArrayBounds Shift

 '## Fibonacci.ArrayBounds Shift

 '## powers.ShiftIndexes true, 1

 '## Fibonacci.ShiftIndexes false, 1

 Dim powers(1 To 10) As Double

 Dim Fibonacci(1 To 10) As Double

 Dim n As Integer

 powers(1) = 2

 For n = 2 To 10

 powers(n) = powers(n - 1) * 2

 Next

 Fibonacci(1) = 1: Fibonacci(2) = 1

 For n = LBounds(Fibonacci) + 2 To Ubound(Fibonacci)

 Fibonacci(n) = Fibonacci(n - 2) + Fibonacci(n - 1)

 Next

The difference is in how the loop bounds are specified for the two arrays: for the powers array the loop bounds are

constant values, therefore it is necessary to compensate in the indexes inside the loop; for the fibonacciarray the

loop bounds are specified in terms of LBound and UBound functions, therefore the indexes inside the loop should

not be altered. This is the resulting VB.NET code:

powers

LBound UBound

VB.NET

 Dim powers(9) As Double

 Dim Fibonacci(9) As Double

 Dim n As Short

 powers(0) = 2

 For n = 2 To 10

 powers(n - 1) = powers(n - 1 - 1) * 2

 Next

 Fibonacci(0) = 1: Fibonacci(1) = 1

 For n = LBounds(Fibonacci) + 2 To Ubound(Fibonacci)

 Fibonacci(n) = Fibonacci(n - 2) + Fibonacci(n - 1)

 Next

Notice that the ShiftIndexes pragma support up to three delta values, thus you can shift indexes also for 2- and

3- dimension arrays, as in this code:

ShiftIndexes

 '## mat.ArrayBounds Shift

 '## mat.ShiftIndexes false, 1, - 1

 Dim mat(1 To 10, - 1 To 1) As Double

Delta values can be negative, can be variables and expressions.

The first argument of ShiftIndexes can also be a regular expression that specifies more precisely to which

expressions the pragma should be applied. For example, consider the following VB6 code:

ShiftIndexes

VB6

 '## arr.ArrayBounds Shift

 '## arr.ShiftIndexes "(k|row)", 1, 1, ""

 Dim arr(1 To 10, 1 To 20) As Integer

 Dim k As Integer, row As Integer, col As Integer

 arr(1, 1) = 0

 For k = 2 To 10

 arr(k, 1) = arr(k - 1) + 10

 Next

 For row = 1 to 10

 For col = LBound(arr, 2) + 1 To UBound(arr, 2)

 arr(row, 1) = arr(row, 1) + arr(row, col)

 Next

 Next

In this case you want to apply the index adjustments only when the index expression is k or row , hence the

regular expression used in the ShiftIndexes pragma. Heres the result after then conversion to VB.NET:

k row

ShiftIndexes

 Dim arr(9, 19) As Short

 Dim k As Short, row As Short, col As Short

 arr(0, 0) = 0

 For k = 2 To 10

 arr(k - 1, 0) = arr(k - 1 - 1, 0) + 10

 Next

 For row = 1 To 10

 For col = LBound6(arr, 2) + 1 To UBound6(arr, 2)

 arr(row - 1, 0) = arr(row - 1, 0) + arr(row - 1, col)

 Next

 Next

Notice that numeric indexes are always affected by the ShiftIndexes pragma, but symbolic numeric constants are

affected only you specify a suitable regular expression (or True) in the first argument.

ShiftIndexes

True

3.2 Default members

The way VB Migration Partner deals with default members depends on how and where the member is defined, and

how it is referenced.

VB Migration Partner

Default property definitions ♦ⱨ◊ꜟ♩ⱪ꜡Ɽ♥▫

When converting a the definition of a property that is marked as the default member of its class, VB Migration

Partner adds the Default keyword if the property has one or more arguments; if the property has no parameters, an

upgrade warning is issued, because .NET doesnt support default properties with zero parameters. For example, if

this property is the default member of its class:

VB Migration Partner

.NET

 Public Property Get Text() As St ring

 Text = "..."

 End Property

VB Migration Partner converts it as:

VB Migration Partner

 <System.Runtime.InteropServices.DispId(0)> _

 Public ReadOnly Property Text() As String

 ' UPGRADE_WARNING (#0154): Default properties with zero arguments aren't

supported.

 Get

 Return "..."

 End Get

 End Property

Notice that the Property block is tagged with a DispID(0) attribute, so that COM clients see the property as the

default member.

DispID(0) COM

Default method and field definitions ♦ⱨ◊ꜟ♩ⱷ♁♇♪≤ⱨ▫כꜟ♪─

When converting a default method or fields definition, VB Migration Partner doesnt modify the definition, except

for the addition of the DispID attribute. In this case no Default keyword can be used, because this keyword can be

applied only to VB.NET properties.

VB Migration Partner DispID

VB.NET

References to default members in early-bound mode Early Bound⸗כ♪≢─♦ⱨ◊ꜟ♩

ⱷfiⱣ┼─

If the VB6 code references a default property, method, or field through a strong- typed variable, the code generator

correctly adds the name of the member. The conversion works correctly for regardless of whether the member

belongs to a class defined in the current project, in another project in the solution, or in a type library.

VB6

Accessing default members in late-bound mode Late Bound⸗כ♪≢─♦ⱨ◊ꜟ♩ⱷfi

Ᵽ─▪◒☿☻

If the VB6 code references a default property, method, or field through a Variant, Object, or Control variable, by

default VB Migration Partner emits a warning. For example, the following VB6 code

VB6

VB Migration Partner VB6

 Sub Test(ByVal obj As Object)

 MsgBox obj

 obj = "new value"

 End Sub

is translated as:

 Sub Test(ByVal obj As Object)

 ' UPGRADE_WARNING (#0354): Unable to read default member of symbol 'obj'.

 ' Consider using the GetDefaultMember6 helper method.

 MsgBox6(obj)

 ' UPGRADE_WARNING (#0364): Unable to assign default member of symbol 'obj'.

 ' Consider using the SetDefaultMember6 helper method.

 obj = "new value"

 End Sub

The VB.NET code compiles correctly but delivers bogus results at runtime. You can generate better code by means

of the DefaultMemberSupport pragma:

VB.NET DefaultMemberSupport

Pragma

 Sub Test(ByVal obj As Object)

 '## DefaultMemberSupport

 MsgBox obj

 obj = "new value"

 End Sub

which delivers this VB.NET code:

VB.NET

 Sub Test(ByVal obj As Object)

 MsgBox6(GetDefaultMember6(obj))

 SetDefaultMember6(obj, "new value")

 End Sub

The GetDefaultMember6 and SetDefaultMember6 methods are defined in the VBMigrationPartner_Support module.

These methods discover and resolve the default member reference at runtime and work correctly also if the default

member takes one or more arguments. For example, the following VB6 code:

GetDefaultMember6 SetDefaultMember6 VBMigrationPartner_Support

VB6

 Sub Test(ByVal obj As Object)

 '## DefaultMemberSupport

 Dim res As Integer

 x = obj(1)

 obj(1) = res + 1

 End Sub

translates to:

 Sub Test(ByVal obj As Object)

 Dim res As Short

 res = GetDefaultMember6(obj, 1)

 SetDefaultMember6(obj, 1, res + 1)

 End Sub

The discovery process is carried out only the first time the GetDefaultMember6 and SetDefaultMember6 process

an object of given type, because the result of the discovery is reused by subsequent calls on variables of the same

type. All subsequent references are faster and add no noticeable overhead to the late- bound call.

GetDefaultMember6 SetDefaultMember6

Late Bound

3.3 GoSub, On GoTo, and On GoSub keywords GoSub On GoTo On GoSub

VB.NET doesnt support GoSub, On Goto, and On Gosub statements. VB Migration Partner, however, is able to

correctly convert these VB6 keywords, at the expense of code readability and maintainability. For this reason

we strongly recommend that you edit the VB6 application to get rid of all the statements based on these keywords.

VB.NET GoSub On GoTo On GoSub VB Migration Partner

VB6

VB6

Anyway, you can surely take advantage of VB Migration Partner ability to handle these statements during the early

stages of the migration process. Lets start with the following VB6 method:

VB Migration Partner

VB6

 Sub Main()

 GoSub First

 GoSub Second

 Exit Sub

 First:

 Debug.Print "First"

 GoSub Third

 Return

 Second:

 Debug.Print "Second"

 ' flow into the next section

 ─☿◒◦ꜛfi⌐

 Third:

 Debug.Print "Third"

 Return

 End Sub

This is how VB Migration Partner converts the code:

VB Migration Partner

 Public Sub Main()

 Dim _vb6ReturnStack As New System.Collections.Generic.Stack(Of Integer)

 _vb6ReturnStack.Push(1): GoTo First

 ReturnLabel_1:

 _vb6ReturnStack.Push(2): GoTo Second

 ReturnLabel_2:

 Exit Sub

 First:

 Debug.WriteLine("First")

 _vb6ReturnStack.Push(3): GoTo Third

 ReturnLabel_3:

 GoTo _vb6ReturnHandler

 Second:

 Debug.WriteLine("Second")

 ' flow into the next section

 ─☿◒◦ꜛfi⌐

 Third:

 Debug.WriteLine("Third")

 GoTo _vb6ReturnHandler

 Exit Sub

 _vb6ReturnHandler:

 Select Case _vb6ReturnStack.Pop()

 Case 1: GoTo ReturnLabel_1

 Case 2: GoTo ReturnLabel_2

 Case 3: GoTo ReturnLabel_3

 End Select

 End Sub

As you can see, the GoSub keyword is transformed into a GoTo keyword that uses the _vb6ReturnStackvariable to

remember where the Return statement must jump to. The _vb6ReturnStack variable holds a stack that keeps

the ID of the return address, a 32- bit integer from 1 to N, where N is the number of GoSub statements in the

current method.

GoSub GoTo

_vb6ReturnStack _vb6ReturnStack

ID 32Bit N N

GoSub

The Return keyword is transformed into a GoTo keyword that points to the _vb6ReturnHandler section, where the

return address is popped off the stack and used to go back to the statement that immediately follows the GoSub.

Return GoTo _vb6ReturnHandler

GoSub

Converting a calculated GoSub delivers similar code, except that the GoSub becomes a GoTo pointing to a Select

Case block. For example, the following VB6 code:

GoSub GoSub Select Case GoTo

VB6

 Dim x As Integer

 x = 2

 On x GoSub First, Second, Third

 Exit Sub

is converted as:

 Dim x As Short = 2

 _vb6ReturnStack.Push(4): GoTo OngosubTarget_1

 ReturnLabel_4:

 ' ... (other porti ons omitted for brevity)

 OngosubTarget_1:

 Select Case x

 Case 1: GoTo First

 Case 2: GoTo Second

 Case 3: GoTo Third

 Case Is <= 0, Is <= 255: GoTo ReturnLabel_4

 Case Else: Err.Raise(5)

 End Select

On GoTo statements are converted in a similar way.

On GoTo

Important note: We can t emphasize strongly enough that the code that VB Migration Partner delivers should be

never left in a production application, because it is unreadable and hardly maintainable. For this reason, all

occurrences of GoSub, On GoTo, and On GoSub keywords cause a warning to be emitted in the generated VB.NET.

(This warning has been dropped in examples shown in this section.)

VB Migration Partner

GoSub On GoTo On GoSub

VB.NET

3.4 Fixed- length strings (FLSs)

A fixed- length strings (FLS) is converted to an instance of the VB6FixedString class. This class exposes a

constructor (which takes the strings length) and the Value property (which takes or returns the strings value).

For example, the following VB6 code:

VB6FixedString

Value VB6

 Dim fs As String * STRINGSIZE

 fs = "abcde"

is converted as follows:

 Dim fs As New VB6FixedString(STRINGSIZE)

 fs.Value = "abcde"

The Value property returns the actual internal buffer, an important detail which ensures that VB6FixedString

instances work well when they are passed to Windows API methods that store a result in a ByVal string argument.

Thanks to this approach, calls that pass FLS arguments to Declare methods work correctly after the migration to

VB.NET.

Value VB6FixedString ByVal

WindowsAPI

Declare VB.NET

Arrays of FLSs require a special treatment and are migrated differently. Consider the following VB6 code:

VB6

 Dim arr(10) As String * 256

 arr(0).Value = "abcde"

becomes:

 Dim arr() As VB6FixedString_256 = CreateArray6(Of VB6FixedString_256)(0, 10)

 ar r(0).Value = "abcde"

where VB6FixedString_256 a special class in the VisualBasic6.Support.vb module:

VB6FixedString_256 VisualBasic6.Support.vb

 <StructLayout(LayoutKind.Sequential)> _

 Public Class VB6FixedString_256

 Private Const SIZE As Integer = 256

 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=SIZE)> _

 Private Buffer As String = VB6FixedString.GetEmptyBuffer(SIZE)

 Public Property Value() As String

 Get

 Return VB6FixedString.Truncate(Buffer, SIZE,

ControlChars.NullChar)

 End Get

 Set(ByVal value As String)

 Buffer = VB6FixedString.Truncate(value, SIZE)

 End Set

 End Property

 End Class

A distinct VB6FixedString_NNN class is generated for each distinct size that appears in FLS declarations inside the

current project.

VB6FixedString_NNN Project

As you see above, the FLS array is initialized by means of a call to the CreateArray6 method. This method ensures

that all the elements in the array are correctly instantiated, so that no NullReference exception is thrown when

accessing any element.

CreateArray6

NullReference

If the array has a nonzero lower index, you can use the ArrayBounds pragma to maintain full compatibility with VB6:

VB6 ArrayBounds

 '## arr .ArrayBounds ForceVB6Array

 Dim arr(1 to 10) As String * 256

which is translated to:

 Dim arr As New VB6ArrayNew(Of VB6FixedString_256)(1, 10)

The VB6ArrayNew(Of T) generic class differs from the VB6Array(Of T) class in that it automatically creates an

instance of the T type for each element of the array. Using a plain VB6Array(Of T) type would throw a

NullReference exception when accessing any array element.

VB6ArrayNewOf T T

VB6Array Of T VB6Array Of T

NullReference

Finally, notice that you can force a scalar (not array) FLS to be rendered as a VB6FixedString_NNN class by means

of a SetStringSize pragma, as in this example:

SetStringSize VB6FixedString_NNN

 '## s.SetStringSize 128

 Dim s As String * 128

Such a pragma can be useful if you plan to assign a FLS to an array of FLSs. In practice, however, applying this

pragma to scalar FLSs is rarely necessary.

3.5 Type End Type blocks (UDTs) Type End Type

The main problem in converting TypeEnd Type blocks a.k.a. User- Defined Types or UDT to VB.NET is that

a .NET structure cant include a default constructor or fields with initializers. This limitation makes it complicated

to convert UDTs that include initialized arrays, auto- instancing (As New) object variables, and fixed- length strings,

because these elements need to be assigned a value when the UDT is created.

Type End Type VB.NET UDT .NET

As New

VB Migration Partner solves this problem by generating a structure with a constructor that takes one dummy

parameter and by ensuring that this constructor is used whenever a new instance of the UDT is created. Consider

the following UDT:

VB Migration Partner

 Type TestUdt

 ' use VB6Array for all arrays with nonzero LBound.

 ∆═≡─ ⌐ⱡfi♀꜡ LBound≤ ⌐ VB6Array╩ ⇔≡ↄ∞↕™⁹

 '## ArrayBounds VB6Array

 a As Integer

 b As New Widget

 c() As Long

 d(10) As Double

 e(1 To 10) As Currency

 f As String * 10

 g(10) As String * 10

 h(1 To 10) As String * 10

 End Type

This is how it is translated to VB.NET:

VB.NET

 Structure TestUdt

 Public a As Short

 Public b As Object

 Public c() As Integer

 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=11)> _

 Public d() As Double

 Public e As VB6Array(Of Decimal)

 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=10)> _

 Public f As VB6FixedString

 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=11)> _

 Public g() As VB6FixedString_10

 Public h As VB6ArrayNew(Of VB6FixedStr ing_10)

 Public Sub New(ByVal dummyArg As Boolean)

 InitializeUDT()

 End Sub

 Public Sub InitializeUDT()

 b = New Object

 ReDim d(10)

 e = New VB6Array(Of Decimal)(1, 10)

 f = New VB6FixedString(10)

 g = CreateArray6(Of VB6FixedString_10)(0, 10)

 h = New VB6ArrayNew(Of VB6FixedString_10)(1, 10)

 End Sub

 End Structure

Note: Previous example uses the ArrayBounds VB6Array pragma only to prove that VB6Array objects are

initialized correctly; in most cases, the most appropriate setting for this pragma inside UDTs is Shift, because this

setting ensures that the size of UDTs doesnt change during the migration.

VB6Array ArrayBounds

VB6Array

Shift

Notice that the constructor takes an argument only because it is illegal to define a parameterless constructor in a

Structure, but the argument itself is never used. Such a constructor is generated only if the UDT contains one or

more members that require initialization, as in previous listing.

The key advantage of having this additional constructor is that it is possible to declare and initialize a UDT in a

single operation. For example, the following VB6 statement:

VB6

 Dim udt As TestUdt

is translated to:

 Dim udt As New TestUdt(True)

VB Migration Partner supports nested UDTs, too. For example, the following VB6 definition:

VB Migration Partner VB6

 Type TestUdt2

 ID As Integer

 Data As TestUdt

 End Type

is converted to:

 Friend Stru cture TestUdt2

 Public ID As Short

 Public Data As TestUdt

 Public Sub New(ByVal dummyArg As Boolean)

 InitializeUDT()

 End Sub

 Public Sub InitializeUDT()

 Data = New TestUdt(True)

 End Sub

 End Structure

A special case occurs when migrating a function or a property that returns a UDT. In this case, the return value is

automatically initialized at the top of the code block, as this example demonstrates:

Function

 Function GetUDT() As TestUdt

 GetUDT.InitializeUDT()

 ...

 End Function

Arrays of UDTs are migrated correctly, even if the UDT requires initialization. In such cases, in fact, the array is

initialized by means of the CreateArray6 method, which ensures that the InitializeUDT method be called for each

element in the array:

CreateArray6 InitializeUDT

 Dim arr() As TestUdt = CreateArray6(Of TestUdt)(0, 10)

In some cases, a FLS defined inside a UDT must be rendered as a standard string rather than a VB6FixedString

object. This replacement is necessary, for example, when the UDT is passed to an external method defined by a

Declare statement, because the external method expects a standard string.

VB6FixedString

Declare

You can force VB Migration Partner to migrate a FLS as a standard string by means of the UseSystemString

pragma. A FLS affected by this pragma is rendered as a private regular System.String field which is wrapped by a

public property which ensures that values being assigned are always correctly truncated or extended. For example,

consider the following VB6 code:

UseSystemString VB Migration Partner

VB6

 Public Type CDInfo

 '##Title.UseSystemString

 Title As String * 30

 Artist As S tring * 30

 End Type

Even though the two items are declared in the same way, the UseSystemString pragma changes the way the Title

item is rendered:

UseSystemString Title

 Friend Structure CDInfo

 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=30)> _

 Private m_Title As String

 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=30)> _

 Public Artist As VB6FixedString

 Public Sub New(ByVal dummyArg As Boolean)

 InitializeUDT()

 End Sub

 Public Sub InitializeUDT()

 m_Title = VB6FixedString.GetEmptyBuffer(30)

 Artist = New VB6FixedString(30)

 End Sub

 Public Property Title() As String

 Get

 Return VB6FixedString.Truncate(m_Title, 30,

ControlChars.NullChar)

 End Get

 Set(ByVal value As String)

 m_Title = VB6FixedString.Truncate(value, 30)

 End Set

 End Property

 End Structure

The UseSystemString pragma can take a boolean value, where True is the default value assumed if you omit the

argument. For example, in the following UDT all items are rendered as regular strings except the Year argument:

UseSystemString True

Year

 Public Type MP3Tag

 '## UseSystemString

 Title As String * 30

 Artist As String * 30

 Album As String * 30

 '## Year.UseSystemString False

 Year As String * 4

 End Type

3.6 Auto- instancing variables

By default, a declaration of an auto- instancing variable is migrated to VB.NET verbatim. For example, the following

statement is translated as- is :

VB.NET as � is

 Dim obj As New Widget

In most cases, this behavior is correct, even though the VB6 and VB.NET semantics are different. More precisely, a

VB6 auto- instancing variable supports lazy instantiation and cant be tested against the Nothing value, because

the very reference to the variable recreates the instance if necessary.

VB6 VB.NET

VB6

VB Migration Partner can generate code that preserves the VB6 semantics, if required. This behavior can be

achieved by means of the AutoNew pragma, which can be applied at the project, class, method, and variable level.

VB Migration Partner VB6

AutoNew Project class

The actual effect of this pragma on local variables is different from the effect on class- level fields:

 Function GetValue() As Integer

 '## obj.AutoNew True

 Dim obj As New Widget

 ' ...

 obj.Value = 1234

 ' ...

 GetValue = obj.Value

 End Function

An auto- instancing local variable that is under the scope of an AutoNew pragma is declared without the New

keyword; instead, all its occurrences in code are automatically wrapped by the special AutoNew6 method:

AutoNew New

AutoNew6

 Function GetValue() As Short

 Dim obj As Widget

 ' ...

 AutoNew6(obj).Value = 1234

 ' ...

 GetValue = ByVal6(obj)

 End Function

The AutoNew6 method ensures that the variable abides by the As New semantics: a new Widget is instantiated

(and assigned to the obj variable) when the method is called the first time and it is automatically recreated if the

variable is set to Nothing.

AutoNew6 As New

Nothing Widget

obj

A class- level field under the scope of an AutoNew pragma is rendered as a property, whose getter block ensures

that the lazy instantiation semantics is honored. For example, if obj is a class- level auto- instancing field, VB

Migration Partner converts as follows:

AutoNew

obj

VB Migration Partner

 Public Property obj() As Widget

 Get

 If obj_InnerField Is Nothing Then obj_InnerField = New Widget ()

 Return obj_InnerField

 End Get

 Set(ByVal value As Widget)

 obj_Inne rField = value

 End Set

 End Property

 Private obj_InnerField As Widget

VB6 also supports arrays of auto- instancing elements, and VB Migration Partner fully supports them. If either an

appropriate ArrayBounds or AutoNew pragma are in effect for such an array, VB Migration Partner renders it as an

instance of the VB6ArrayNew(Of T) type. For example, the following VB6 code:

VB6 VB Migration Partner

ArrayBounds AutoNew VB

Migration Partner VB6ArrayNewOf T VB6

 '## arr.AutoNew

 '## arr.ArrayBounds ForceVB6Array

 Dim arr(10) As New TestClass()

is translated as

 Dim arr() As New VB6ArrayNew(Of TestClass)(0, 10)

The VB6ArrayNew(Of T) generic type behaves exactly as VB6Array(Of T), except the former automatically ensures

that all its elements are instantiated before they are accessed.

VB6ArrayNewOf T VB6Array Of T

3.7 Declare statements

VB Migration Partner is able to automatically solve most of the issues related to converting VB6 Declare

statements to VB.NET. More specifically, in addition to data type conversion (e.g. Integer to Short, Long to Integer),

the code generator adopts the following techniques:

VB Migration Partner VB6 VB.NET

Integer Short Long Integer

ΓAs AnyΔ parameters ₈As Any₉Ɽꜝⱷכ♃

If the Declare statement includes an As Any parameter, VB Migration Partner takes note of the type of values

passed to it and the passing mechanism used (ByRef or ByVal), and then generates one or more overloads for the

Declare statement. An example of a Windows API method that requires this treatment is SendMessage, which can

take an integer or a string in its last argument:

As Any VB Migration Partner

ByRef ByVal

WindowsAPI SendMessage

Integer String

 Private Declare Function SendMe ssage Lib "user32.dll" _

 Alias "SendMessageA" (ByVal hWnd As Long, _

 ByVal wMsg As Long, ByVal wParam As Long, _

 lParam As As Any) As Long

 Sub SetText()

 ' here we pass a string

 ↓↓≢ ╩ ⇔╕∆

 SendMessage Text1.hWnd, WM_SETTEXT, 0, ByVal "new text"

 End Sub

 Sub CopyToClipboard()

 ' here we pass a 32 - bit integer

 ↓↓≢ 32bit ─ ╩ ⇔╕∆

 SendMessage Text1.hWnd, WM_COPY, 0, ByVal 0

 End Sub

This is the VB.NET code that VB Migration Partner generates. As you see, the As Any argument is gone and two

overloads for the SendMessage method have been created:

VB Migration Partner VB.NET As Any

SendMessage

 Private Declare Function SendMessage Lib "user32.dll" _

 Alias "SendMessageA" (ByVal hWnd As Integer, _

 ByVal wMsg As Integer, ByVal wParam As Integer, _

 ByVal lParam As String) As Integer

 Private Declare Fun ction SendMessage Lib "user32.dll" _

 Alias "SendMessageA" (ByVal hWnd As Integer, _

 ByVal wMsg As Integer, ByVal wParam As Integer, _

 ByVal lParam As Integer) As Integer

AddressOf keyword and callback parameters AddressOf◐כ꞉כ♪≤ callbackⱤꜝⱷכ

♃

If client code uses the AddressOf keyword when passing a value to a 32- bit parameter, VB Migration Partner

assumes that the parameter takes a callback address and overloads the Declare to take a delegate type. For

example, consider the following VB6 code inside the ApiMethods BAS module:

32bit AddressOf VB

Migration Partner callback

API BAS VB6

 Declare Function EnumWindows Lib "user32" _

 (ByVal lpEnumFunc As Long, ByVal lParam As Long) As Long

 Sub TestEnumWindows()

 EnumWindows AddressOf EnumWindows_CBK, 0

 End Sub

 ' The callback routine

 callback fi♅כꜟ

 Function EnumWindows_CBK(ByVal hWnd As Long, _

 ByVal lParam As Long) As Long

 ' Store the window handle and return 1 to continue enumeration

 ╩ ↑╢√╘─ ╡ ≤WindowⱢfi♪ꜟ╩ ⇔╕∆

 ' ...

 EnumWindows_CBK = 1

 End Function

This is how VB Migration Partner converts the code to VB.NET:

VB Migration Partner VB.NET

 ' List of Public delegates used for callback methods

 callback ⱷ♁♇♪⌐ ↕╣╢ Public ♩☻ꜞ─♪כ◕ꜞ♦

 Public Delegate Function EnumWindows_CBK(ByVal hWnd As Integer, ByVal lParam

As Integer) As Integer

 Friend Module Module1

 Declare Function EnumWindows Lib "user32" (ByVal lpEnumFunc As Integer, _

 ByVal lParam As Integer) As Integer

 Declare Function EnumWindows Lib "user32" (By Val lpEnumFunc As

EnumWindows_CBK, _

 ByVal lParam As Integer) As Integer

 Public Sub TestEnumWindows()

 EnumWindows(AddressOf EnumWindows_CBK, 0)

 End Sub

 ' The callback routine

 cal lback fi♅כꜟ

 Function EnumWindows_CBK(ByVal hWnd As Integer, ByVal lParam As Integer)

As Integer

 ' Store the window handle and return 1 to continue enumeration

 ╩ ↑╢√╘─ ╡ ≤WindowⱢfi♪ꜟ╩ ⇔╕∆

 ' ...

 Return 1

 End Function

 End Module

Notice that only the Declare needs to be overloaded: the code that use the Declare doesnt require any special

treatment.

Windows API methods that can be replaced by calls to .NET methods .NETⱷ♁♇♪┼─

┘ ⇔⌐╟∫≡ ⅝ ⅎ╠╣╢WindowsAPIⱷ♁♇♪

VB Migration Partner is aware that calls to some specific Windows API methods can be safely replaced by calls to

static methods defined in the .NET Framework, as is the case of Beep (which maps to Console.Beep), Sleep

(System.Threading.Thread.Sleep), and a few others. When a call to such a Windows API method is found, it is

automatically replaced by the corresponding call to the .NET Framework.

VB Migration Partner WindowsAPI .NET Framework Static

Beep Console.Beep Sleep System.Threading.Thread.Sleep

WindowsAPI .NET Framework

Windows API methods that have a recommended .NET counterpart ↕╣╢.NET

╩ ≈WindowsAPIⱷ♁♇♪

VB Migration Partner comes with a database of about 300 Windows API methods, where each method is associated

with the recommended replacement for .NET. If the parser finds a Declare in this group, a warning is emitted, as in

this example:

VB Migration Partner 300 WindowsAPI

.NET API

 ' UPGRADE_INFO (#0241): You can replace calls to the GetSystemDirectory'

unmanaged method

 ' with the following .NET member(s): System.Environment.SystemDirectory

 Private Declare Function GetSystemDirectory Lib "kernel32.dll" _

 Alias "GetSystemDirectoryA" (ByVal lpBuffer As String, _

 ByVal nSize As Integer) As Integer

3.8 Variant and Control variables

By default, Variant variables are converted to Object variables. This default behavior can be changed by means of

the ChangeType pragma, which changes the type of all Variant members (within the pragmas scope) into

something else. More specifically, developers can decide that Variant variables are rendered using the special

VB6Variant type, as in this code:

ChangeType

VB6Variant

 '## ChangeType Variant, VB6Variant

 Dim v As Variant

 Dim arr() As Variant

which is translated to:

 Dim v As VB6Variant

 Dim arr() As VB6Variant

The VB6Variant type (defined in the language support library) mimics the behavior of the VB6 Variant type as

closely as possible, for example by providing support for the special Null and Empty values.

VB6Variant Language Support Library VB6 Variant

NULL Empty

VB6Variant values can be tested by means of the IsEmpty6 and IsNull6 methods, and are recognized by the

VarType6 method. Optional parameters of type Variant can be tested with the IsMissing6 function, similarly to what

VB6 apps can do.

VB6Variant IsEmpty6 IsNull6 VarType6

Variant VB6 IsMissing6

The VB6Variant class provides a limited support for null propagation in math and string expressions. This ability is

achieved by overloading all math and strings operators. The degree of support offered is enough complete for most

common cases, but there might be cases when the result differs from VB6.

VB6Variant Null

VB6

By default VB Migration Partner translates variables and parameters of type Controls to Object variables and

parameters. We opted for this approach because the VB6 Control is actually an IDispatch object and inherently

requires late binding, as in this example:

VB Migration Partner

VB6 IDispatch

 ' Make all the textboxes on form read - only

 ⱨ◊כⱶ ReadOnly─∆═≡─♥◐☻♩Ⱳ♇◒☻╩ ╡╕∆

 Dim ctrl As Control

 For Each ctrl In Me.Controls

 If TypeOf ctrl Is TextBox Then ctrl.Locked = True

 Next

If the ctrl variable were rendered as a System.Windows.Forms.Control object, the code wouldnt compile because

the Control class doesnt expose a Locked property. By contrast, VB Migration Partner renders the variable as an

Object variable and produces VB.NET code that compiles and executes correctly:

Ctrl System.Windows.Forms.Control

Locked VB Migration Partner

VB.NET

 ' Make all the textboxes on form read - only

 ⱨ◊כⱶ ReadOnly─∆═≡─♥◐☻♩Ⱳ♇◒☻╩ ╡╕∆

 Dim ctrl As Object

 For Each ctrl In Me.Controls6

 If TypeOf ctrl Is VB6TextBox Then ctrl.Locked = True

 Next

In other circumstances, however, changing the default behavior might deliver more efficient code. For example,

consider this VB6 code:

VB6

 '## ctrl.SetType Control

 Dim ctrl As Control

 For Each ctrl In Me.Controls

 If TypeOf ctrl Is TextBox Or TypeOf ctrl Is ComboBox Then

 ctrl.Text = ""

 End If

 Next

In this case, you can leverage the fact that the System.Windows.Forms.Control class exposes the Text property,

thus you can add a SetType pragma that changes the type for the ctrl variable. This is the resulting VB.NET code:

System.Windows.Forms.Control Text

ctrl SetType VB.NET

 Dim ctrl As Control

 For Each ctrl In Me.Controls6

 If TypeOf ctrl Is VB6TextBox Or TypeOf ctrl Is VB6ComboBox Then

 ctrl.Text = ""

 End If

 Next

The ctrl variable is now strong- typed and the VB.NET code runs faster.

Ctrl VB.NET

Please notice the difference between the ChangeType pragma (which affects all the variables and parameters of a

given type) and the SetType pragma (which affects only a specific variable or parameter).

ChangeType SetType

3.9 Classes and Interfaces

VB Migration Partner deals with VB6 classes and interfaces in a manner that resembles the way interfaces and

coclasses work in COM. More specifically, if a VB6 class named XYZ appears in an Implements statement,

anywhere in the current solution, then VB Migration Partner generates an Interface named XYZ and renames the

original class as XYZClass. For example, assume that you have the following IPlugIn class:

VB Migration Partner COM coclass VB6

XYZ VB6 Implements

Solution VB Migration Partner XYZ XYZClass

IPlugIn

 ' the IPlugin cl ass

 Sub Execute()

 ' execute the task ...

 End Sub

 Property Get Name() As String

 ' return Name here ...

 End Property

Next, assume that the IPlugIn class is referenced by an Implements statement in the SamplePlugIn class, defined

elsewhere in the current project or solution:

IPlugIn Projec SamplePlugIn mplements

 ' inside the SamplePlugIn class

 SamplePlugIn class ─ ≢

 Implements IPlugIn

Under these assumptions, this is the code that VB Migration Partner generates:

 Migration Partner

 Public Class IPlugInClass

 Implements IPlugIn

 Sub Execute() Implements IPlugIn.Execute

 ' execute the task ...

 End Sub

 ReadOnly Property Name() As String Implements IPlugIn.Name

 Get

 ' return Name here ...

 End Get

 End Property

 End Class

 Public Interface IPlugIn

 Sub Execute()

 ReadOnly Property Name() As String

 End Interface

This rendering style minimizes the impact on code that references the ISomething class. For example, the following

VB6 code:

ISomething

 Sub CreatePlugIn(itf As IPlugIn)

 Set itf = New SamplePlugIn

 End Sub

is converted to a piece of VB.NET code that is virtually identical, except for the Set keyword being dropped:

Set VB.NET

 Sub CreatePlugIn(ByRef itf As IPlugIn)

 itf = New SamplePlugIn()

 End Sub

References to the IPlugIn type are replaced by references to the IPlugInClass name only when the class name

follows the New keyword, as in this VB6 code:

IPlugIn IPlugInClass

VB6

 Dim itf As New IPlugIn

which translates to

 Dim itf As New IPlugInClass

You ve seen so far that when a VB6 class appears in an Implements statement, by default VB Migration Partner

takes a conservative approach and creates a both a VB.NET class and an interface. This approach ensures that the

migrated app works correctly in all cases, including when the VB6 class is actually instantiated. In most real cases,

however, a type used in an Implements statement never appears as an operand for the New keyword; therefore

generating the class is of no practical use. You can tell VB Migration Partner not to generate the class by means of

a ClassRenderMode pragma:

VB6 Implements VB Migration Partner

VB.NET VB6

Implements New

ClassRenderMode

VB Migration Partner

 ' render the current class only as an interface

 ↓─◒ꜝ☻╩▬fi♃כⱨ▼כ☻≤⇔≡─╖꜠fi♄ꜞfi◓∆╢

 '## ClassRenderMode Interface

The ClassRenderMode pragma can t be applied at the project level and has to be specified for each distinct class.

ClassRenderMode

3.10 Finalization and disposable classes disposable

All VB6 and COM objects internally manage a reference counter: this counter is incremented each time a reference

to the object is created and is decremented when the reference is set to Nothing. When the counter reaches zero

it s time to fire the Class_Terminate event and destroy the object. This mechanism is known asdeterministic

finalization, because the instant when the object is destroyed can be precisely determined.

VB6 COM

Nothing

Class_Terminate

.NET objects dont manage a reference counter and objects are physically destroyed only some time after all

references to them have been set to Nothing, more precisely when a garbage collection is started. One of the

biggest challenges in writing a VB6 code converter is the lack of support for deterministic finalization in the .NET

Framework.

.NET Nothing

VB6

.NET Framework

VB.NET objects that need to execute code when they are destroyed implement the IDisposable interface. Such

objects rely on the collaboration from client code, in the sense that the developer who instantiates and uses the

object is responsible for disposing of the object by calling the IDisposable.Dispose method before setting the

object variable to Nothing or letting it go out of scope. In general, any .NET class that defines one or more

class- level field of a disposable type should be marked as disposable and implement the IDisposable interface. The

code in the Dispose method should orderly dispose of all the objects referenced by the class- level fields.

VB.NET IDisposable

Nothing IDsiposable.Dispose

disposable

.NET disposable

IDisposable Dispose

As just noted, the code that instantiates the class is also responsible for calling the Dispose method as soon as the

object isn t necessary any longer, so that referenced disposable objects are disposed as soon as possible. For

example, if the class defines and opens one or more database connections (e.g. an SqlConnection object), calling

the Dispose method ensures that the connection is closed as quickly as possible. If the call to the Dispose method

is omitted, the connection will be closed only later, at the first garbage collection.

Dispose

disposable

SqlConnection Dispose

Dispose

The .NET Framework also supports finalizable classes. A finalizable class is a class that overrides the Finalize

method and defines one or more fields that contain Windows handles or other values related

to unmanagedresources. For example, a class that opens a file by means of the CreateFile Windows API method

must be implemented as a finalizable class. The method in the Finalize method is guaranteed to run when the object

is being removed from memory during a garbage collection. The code in the Finalize method is expected to close all

handles and orderly release all unmanaged resources. Failing to do so would create a resource leak.

.NET Framework Finalizable

Windows

CreateFile Windows API

VB Migration Partner supports both disposable and finalizable classes. However, you might need to insert one or

more pragmas to help it to generate the same quality code that an experienced .NET developer would write. Lets

start with a VB6 class that handles the Class_Terminate event

VB Migration Partner disposable

Pragma .NET

VB6 Class_Terminate

 Private fileHandle As Long

 Private Sub Class_Terminate()

 ' CloseHandle is a Windows API method defined elsewhere by a Declare

statement

 CloseHandle│ Declare ⌐⅛↓≤≢♩ⱷfi♩כ♥☻ ↕╣√Windows APIⱷ♁

♇♪≢∆

 CloseHandle fileHandle

 End Sub

VB6 classes that include a Class_Terminate are converted to disposable classes that implement the recommended

Dispose- Finalize pattern. The generated code ensures that the code inside the original Class_Terminate event runs

when either a client invokes the Dispose method or when the garbage collection invokes the Finalize method:

Class_Terminate VB6 Dispose Finalize disposable

Dispose

Finalize Class_Terminate

 Public Class Widget

 Implements IDisposable

 Private fileHandle As Integer

 Private Sub Class_Terminate_VB6()

 CloseHandle(fileHandle)

 End Sub

 Protected Overrides Sub Finalize()

 Dispose(False)

 End Sub

 Public Sub Dispose() Implements System.IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 Class_Terminate_VB6()

 End Sub

 End Class

If the Terminate event is defined inside a Form or a UserControl class, the Dispose method isnt emitted (because

the base class is already disposable); instead, the Form_Terminate or UserControl_Terminate protected method is

overridden:

Form Dispose

Form_Terminate

UserControl_Terminate

 Protected Overrides Sub Form_Terminate_VB6()

 CloseHandle(fileHandle)

 End Sub

VB Migration Partner can take additional steps to ensure that, if a class uses one or more disposable objects, such

objects are correctly disposed of when an instance of the class goes out of scope. In other words, not only does the

code generator mark classes with a finalizer as IDisposable classes (as explained above) but it also marks classes

using other disposable objects as IDisposable.

VB Migration Partner

Disposable

IDisposable

Finalizer IDisposable Disposable

To explain how this feature works, a few clarifications are in order. As far VB Migration Partner is concerned, a

disposable type is one of the following:

VB Migration Partner Disposable

a. a VB6 class that has a Class_Terminate event (as seen above)

VB6 ◒ꜝ☻│ Class_Terminate ▬ⱬfi♩╩ ∫≡™╕∆⁹ ≢

b. a COM type known to be as disposable (e.g. ADODB.Connection)

COM │ disposable≤⇔≡ ╠╣≡™╕∆⁹ ADODB.Connection

c. a COM type that is explicitly marked as disposable by means of a n AddDisposableType pragma, as

in this example: '## AddDisposableType CALib.DBUtils

AddDisposableType ⱪꜝ◓ⱴ⌐╟╢ disposable≤⇔≡ ╠⅛⌐ⱴכ◒↕╣╢ COM ♃▬ⱪ⁹

≤⇔≡'## AddDisposableType CALib.DBUtils

d. a VB6 class that has one or more class -level fields of a disposable type

VB6◒ꜝ☻│ disposable ─ 1≈ ─◒ꜝ☻꜠ⱬꜟⱨ▫כꜟ♪╩ ∫≡™╕∆⁹

VB Migration Partner applies these definition in a recursive way. For example, assuming that class C1 has a field of

type ADODB.Connection, class C2 has a field of type C1, and class C3 has a field of class C2, then all the C1, C2,

and C3 classes are all marked as IDisposable.

VB Migration Partner C1

ADODB.Connection C2 C1 C3 C2

C1 C2 C3 IDisposable

If a type is found to be disposable, the exact VB.NET code that VB Migration Partner generates depends on

whether it s under the scope of an AutoDispose pragma. This pragma takes an argument that can have the

following values:

disposable VB Migration Partner VB.NET

AutoDispose

No

Variables of disposable types arent handled in any special way. (This is the default behavior.)

Disposable

Yes

If X is a variable of a disposable type, the Set X = Nothing statement is converted as follows:

X Disposable Set X=Nothing

 SetNothing6(X)

The SetNothing6 method (defined in CodeArchitects.VBLibrary) ensures that the object is cleaned- up correctly. If

the object implements IDisposable then SetNothing6 calls its Dispose method. If the object is a COM object,

SetNothing6 ensures that the objects RCW is correctly released.

SetNothing6 CodeArchitects.VBLibrary

IDisposable SetNothing6 Dispose COM

SetNothing6 RCW

Force

In addition to converting explicit Set X = Nothing statements for disposable objects, VB Migration Partner ensures

that if a VB6 class uses one or more disposable objects, the corresponding VB.NET class implements the

IDisposable interface and all the disposable objects are correctly disposed of in the classs Dispose method.

Disposable Set X=Nothing VB Migration Partner VB6

1 Disposable VB.NET IDisposable

Disposable Dispose

Let s see in practice how to use the AutoDispose pragma, starting with the Yes option:

Yes AutoDispose Pragma

 '## AutoDispose Yes

 Sub Test()

 Dim cn As New ADODB.Connection

 Dim rs As New ADODB.Recordset

 ' opens the connection and the recordset (omitted)

 ◖Ⱡ◒◦ꜛfi╩○כⱪfi⇔⁸꜠◖כ♪☿♇♩

 ' Ν

 Set rs = Nothing

 Set cn = Nothing

 End Sub

The resulting VB.NET code is identical, except for the SetNothing6 method:

SetNothing6 VB.NET

 Sub Test()

 Dim cn As New ADODB.Connection

 Dim rs As New ADODB.Recordset

 ' opens the connection and the recordset (omitted)

 ◖Ⱡ◒◦ꜛfi╩○כⱪfi⇔⁸꜠◖כ♪☿♇♩

 ' Ν

 SetNothing6(rs)

 SetNothing6(cn)

 End Sub

Let s see now the effects of the Force option, and let s assume that the following VB6 code is contained in the

Widget class:

Force VB6 Widget

 '## AutoDispose Force

 '## AddDisposableType CALib.DBUtils

 Dim cn As ADODB.Connection

 Dim utils As CALib .DBUtils

 Ν

The ADODB.Connection type is known to be disposable, whereas CALib.DBUtils is marked a disposable by the

AddDisposableType pragma. (Such a pragma implicitly has a project- level scope.) Because of rule d) above, the

Widget class is considered to be disposable, which makes VB Migration Partner generate the following code:

ADODB.Connection Disposable CALib.DBUtils AddDisposableType

Disposable ProjectLevel

d Widget Disposable VB Migration Partner

 Public Class Widget

 Implements System.IDisposable

 Dim cn As ADODB.Connection

 Dim utils As CALib.DBUtils

 Ν

 Public Sub Dispose() Implements System.IDisposable.Dispose

 SetNothing6(cn)

 SetNothing6(utils)

 End Sub

 End Class

If the Widget class has a Class_Terminate event handler, the code in the Dispose method is slightly different:

Widget Class_Terminate Dispose

 Public Sub Dispose() Implements System.IDisposable.Dispose

 Try

 SetNothing6(cn)

 SetNothing6(utils)

 Finally

 Class_Terminate_VB6()

 GC.SupporessFinalize(Me)

 End Try

 End Sub

Notice that a class that uses disposable objects doesnt necessarily implement the Finalize method, as per .NET

guidelines. Only VB6 classes that have a Class_Terminate event are migrated to VB.NET classes with the Finalize

method.

Disposable .NET Finalize

Class_Terminate VB6 Finalize VB.NET

VB Migration Partner ensures that disposable objects are correctly cleaned- up also when they are assigned to

local variables, if a proper AutoDispose pragma is used. For example, consider the following method inside the

TestClass class:

AutoDispose VB Migration Partner Disposable

 '## AutoDispose For ce

 Sub Execute()

 Dim conn As New ADODB.Connection

 If condition Then

 Dim wid As Widget

 Ν

 End If

 End Sub

In such a case VB Migration Partner moves variables declarations to the top of the method, puts the method s

body inside a Try block, and ensures that disposable objects are cleaned- up in the Finally block. Notice that

thewid variable is cleaned- up as well, because Widget has found it to be disposable:

VB Migration Partner Try

Disposable Final

Widget Disposable wid

 Sub Execute()

 Dim conn As New ADODB.Connection

 Dim wid As Widget

 Try

 If condition Then

 Ν

 End If

 Finally

 SetNothing6(conn)

 SetNothing6(wid)

 End Try

 End Sub

However, if the method contains one or more On Error statements (which can t coexist with Try blocks) or GoSub

statements (which would produce a forbidden GoTo that jumps inside the Try- Catch block), the code generator

emits a warning that reminds the developer that a manual fix is needed:

1 On Error Try GoSub

Try- Catch GoTo

 ' UPGRADE_INFO (#0201): An On Error or GoSub statement prevents from generating

 ' Try - Finally block that clears IDisposable local variables.

The approach VB Migration Partner uses to ensure that disposable variables are cleaned- up correctly resolves

most of the problems related to undeterministic finalization in .NET. One of the few cases VB Migration Partner can

t handle correctly is when a class field or a local variable points to an object that is referenced by fields in another

class, as in this case:

VB Migration Partner disposable .NET

VB Migration Partner

 Sub Execute()

 Dim conn As New ADODB.Connection

 ' GlobalConn is a public variable defined in a BAS module

 GlobalConn│ BAS⸗☺ꜙכꜟ≢ ↕╣≡™╢ⱤⱩꜞ♇◒ ≢∆

 Set GlobalConn = conn

 Ν

 End Sub

In this specific case, invoking the Dispose method on the conn variable would close the connection referenced by

the GlobalConn variable, which in turn may cause the app to malfunction. Developers can avoid this problem by

disabling the AutoDispose feature for a given variable or for all the variables in a method:

conn Dispose GlobalConn

AutoDispose

 Sub Execute()

 '## conn.AutoDispose No

 Dim conn As New ADODB.Connection

 Ν

 End Sub

3.11 ActiveX Components ActiveX

VB Migration Partner supports most of the kinds of COM classes that you can create with VB6. This section

explains how you can fine- tune the VB.NET code being generated.

VB Migration Partner VB6 COM

VB.NET

ActiveX EXE projectsActiveX EXEⱪ꜡☺▼◒♩

ActiveX EXE projects arent supported in VB.NET and, by default, VB Migration Partner converts them to standard

EXE projects. Developers can change this behavior by means of the ProjectKind pragma:

ActiveX EXE VB.NET VB Migration Partner EX

ProjectKind

 '## ProjectKind dll

MultiUse, SingleUse, and PublicNotCreatable classesMultiUse⁸SingleUse⁸⅔╟┘

PublicNotCreatable◒ꜝ☻

MultiUse and SingleUse classes are converted to public VB.NET classes with a public constructor, so that they can

be instantiated from a different assembly. PublicNotCreatable classes are converted to public VB.NET classes

whose constructor has Friend scope, so that the class cant be instantiated from outside the current project.

MultiUse SingleUse Public PublicVB.NET

PublicNotCreatable Public VB.NET

Notice that the .NET Framework doesnt support the behavior implied by the SingleUse instancing attribute,

therefore SingleUse and MultiUse classes are converted in the same way.

.NET Framework SingleUse

SingleUse MultiUse

In all three cases, the class is marked with a System.Runtime.InteropServices.ProgID attribute, so that it is visible

to COM clients. If the VB6 class was associated to a description, it appears as an XML comment at the top of the

VB.NET class:

COM

System.Runtime.InteropServices.ProgID VB6

VB.NET XML

 ''' <summary>

 ''' description for the Widg et class

 ''' </summary>

 <System.Runtime.InteropServices.ProgID("Project1.Widget")> _

 Public Class Widget

 ' A public default constructor

 ⱤⱩꜞ♇◒♦ⱨ◊ꜟ♩◖fi☻♩ꜝ◒♃

 Public Sub New()

 ' Add initialization c ode here

⌐↓↓╩♪כ◖☼▬ꜝꜗ◦♬▬ ⇔╕∆

 End Sub

 ' other class members here ...

 ∕─ ─◒ꜝ☻─ⱷfiⱣ╩↓↓⌐ ההה∆╕⇔

 End Class

GlobalMultiUse and GlobalSingleUse classes GlobalMultiUse ≤ GlobalSingleUse ◒ꜝ

☻

By default, GlobalMultiUse and GlobalSingleUse classes are translated to standard VB.NET classes. However, when

a client accesses a method or property of such classes, VB Migration Partner generates a call to a method of a

default instance named ProjectName_ClassName_DefInstance, as in:

GlobalMultiUse GlobalSingleUse VB.NET

VB Migration Partner Project _

_DefInstance

 ' EvalArea is a method of the Ge ometry global multiuse class

 ' defined in an ActiveX DLL project named CALib

 EvalArea│ CALib≤™℮ ─ ActiveX DLLⱪ꜡☺▼◒♩⌐ ↕╣√

GeometryGlobalMultiUse◒ꜝ☻─ⱷ♁♇♪≢∆⁹

 res = CALib_Geometry_DefInstance.EvalArea(12, 23)

All the *_DefInstance variables are defined and instantiated in the VisualBasic6.Support.vb module, in the

MyProject folder.

*_DefInstance MyProject VisualBasic6.Support.vb

In most cases, a global class is used as a singleton class and is never instantiated explicitly. In other words, a client

typically never uses a global class with the New keyword and uses only the one instance that is instantiated

implicitly. If you are sure that all clients abide by this constraint, it is safe to translate the class to a VB.NET module

instead of a class, which you do by means of the ClassRenderMode pragma:

Global

New Global

ClassRenderMode VB.NET

 ' (add inside the Geo metry class...) (Geometry ◒ꜝ☻ ⌐ ...)

 '## ClassRenderMode Module

If such a pragma is used, the current class is rendered as a VB.NET Module and no default instance variable is

defined in the client project. When a Module is used, methods can be invoked directly, the VB.NET code is more

readable, and the method call is slightly faster. Notice that the project name is included in all references, to avoid

ambiguities:

VB.NET

VB.NET

 res = CALib.EvalArea(12, 23)

Notice that you shouldnt use the ClassRenderMode pragma with global classes that have a Class_Terminate event,

because VB Migration Partner automatically renders them as classes that implement the IDisposable interface, and

the Implements keyword inside a VB.NET module would cause a compilation error.

Class_Terminate ClassRenderMode

VB Migration Partner IDisposable

VB.NET Implements

Component initialization ◖fiⱳכⱠfi♩─

If an ActiveX DLL includes a Sub Main method, then the VB6 runtime ensures that this method is invoked before

any component in the DLL is instantiated. This mechanism allows VB6 developers to use the Sub Main method to

initialize global variables, read configuration files, open database connections, and so forth.

ActiveX DLL Sub Main VB6 DLL

VB6

Sub Main

This mechanism isnt supported by VB.NET and the .NET Framework in general, therefore VB Migration Partner

emits additional code to ensure that the Sub Main is executed exactly once, before any class of the DLL is

instantiated.

.NET Framework VB.NET VB Migration

Partner DLL Sub Main

 Public Class Widget

 ' This static constructor ensures that the VB6 support library

 ' be initialized before using current class.

 ↓─ ⌂◖fi☻♩ꜝ◒♃│⁸ ─◒ꜝ☻╩ ∆╢ ⌐ VB6◘ⱳכ♩ꜝ▬Ⱪ

ꜝꜞ⅜ ↕╣╢─╩ ⇔╕∆⁹

 Shared Sub New()

 EnsureVB6LibraryInitialization()

 ' Ensure that code in Sub Main be executed before using this class

 Sub Main─◖כ♪⅜↓─◒ꜝ☻╩ ∆╢ ⌐ ↕╣╢↓≤╩ ⇔╕

∆

 EnsureVB6ComponentInitialization()

 End Sub

 ' other class members here ...

 ─◒ꜝ☻─ⱷfiⱣ╩↓↓⌐ ההה∆╕⇔

 End Class

The EnsureVB6LibraryInitialization method checks that the language support library is initialized correctly, whereas

the EnsureVB6ComponentInitialization method invokes the Sub Main if it hasnt been already executed.

EnsureVB6LibraryInitialization

EnsureVB6ComponentInitialization Sub Main

3.12 Persistable classes Persistable

VB Migration Partner fully supports VB6 persistable classes. To illustrate exactly what happens, assume that you

have a VB6 class marked as persistable and that handles the InitProperties, ReadProperties, and WriteProperties to

implement persistence:

VB Migration Partner VB6

VB6 InitProperties ReadProperties WriteProperties

 Const ID_DEF As Integer = 0

 Const NAME_DEF As String = ""

 Public ID As Integer

 Public Name As String

 ' initialize property values

 ⱪ꜡Ɽ♥▫─ ╩

 Private Sub Class_InitProperties()

 ID = 123

 Name = "widget name"

 End Sub

 ' read property values when the class is deserialized

 ◒ꜝ☻⅜♦◦ꜞ▪ꜝ▬☼↕╣√╠ⱪ꜡Ɽ♥▫─ ╩ ╗

 Private Sub Class_ReadProperties(PropBag As PropertyBag)

 ID = PropBag.ReadProperty("ID", ID_DEF)

 Name = PropBag.WriteProperty("Name", NAME_DEF)

 End Sub

 ' write property values when the o bject is serialized

 ○Ⱪ☺▼◒♩⅜◦ꜞ▪ꜝ▬☼↕╣√╠⁸ⱪ꜡Ɽ♥▫─ ╩ ⅝ ╗

 Private Sub Class_WriteProperties(PropBag As PropertyBag)

 PropBag.WriteProperty "ID", ID, ID_DEF

 PropBag.WriteProperty "Name", Name, NAME_DEF

 End Sub

The resulting VB.NET class is marked with the Serializable attribute and implements the

System.Runtime.Serialization.ISerializable interface. The class constructor invokes the Class_InitProperty handler:

VB.NET Serializable System.Runtime.Serialization.ISerializable

Class_InitProperty

 Imports System.Runtime.Serialization

 <System.Runtime.InteropServices.ProgID("Project1.Widget")> _

 <Serializable()> _

 Public Class Widget

 Implements ISerializable

 'A public default constructor

 Public ♦ⱨ◊ꜟ♩◖fi☻♩ꜝ◒♃

 Public Sub New()

 Class_InitProperties()

 End Sub

Event handlers are converted as standard private methods:

 Private Const ID_DEF As Short = 0

 Private Const NAME_DEF As String = ""

 Public ID As Short

 Public Name As String = ""

 ' initialize property values

 ⱪ꜡Ɽ♥▫─ ╩

 Private Sub Class_InitProperties()

 ID = 123

 Name = "widget name"

 End Sub

 ' read property values when the class is deserialized

 ◒ꜝ☻⅜♦◦ꜞ▪ꜝ▬☼↕╣√╠ⱪ꜡Ɽ♥▫─ ╩ ╗

 Private Sub Cla ss_ReadProperties(ByRef PropBag As VB6PropertyBag)

 ID = PropBag.ReadProperty("ID", ID_DEF)

 Name = PropBag.WriteProperty("Name", NAME_DEF)

 End Sub

 ' write property values when the object is serialized

 ○Ⱪ☺▼◒♩⅜◦ꜞ▪ꜝ▬☼↕╣√╠⁸ⱪ꜡Ɽ♥▫─ ╩ ⅝ ╗

 Private Sub Class_WriteProperties(ByRef PropBag As VB6PropertyBag)

 PropBag.WriteProperty("ID", ID, ID_DEF)

 PropBag.WriteProperty("Name", Name, NAME_DEF)

 End Sub

The code in the GetObjectData and the constructor implied by the ISerializable interface invoke the InitProperties,

ReadProperties, and WriteProperties handlers:

GetObjectData ISerializable InitProperties

ReadProperties WriteProperties

 Private Sub GetObjectData(ByVal info As SerializationInfo, _

 ByVal context As StreamingContext) Implements

ISerializable.GetObjectData

 Dim propBag As New VB6PropertyBag

 Class_WriteProperties(propBag)

 info.AddValue("Contents", propBag.Contents)

 End Sub

 Private Sub New(ByVal info As SerializationInfo, ByVal context As

StreamingContext)

 Dim propBag As New VB6PropertyBag

 Class_InitPropertie s()

 propBag.Contents = info.GetValue("Contents", GetType(Object))

 Class_ReadProperties(propBag)

 End Sub

 End Class

All references to the VB6 s PropertyBag object are replaced by references to VB6PropertyBag, a class with

similar interface and behavior defined in the language support library. It is important to bear in mind, however, that

binary files created by persisting a VB6 object cant be deserialized into a VB.NET object, and vice versa.

VB6 PropertyBag

VB6PropertyBag VB6

VB.NET

3.13 Resources

VB6 resource files are converted to standard .resx files and can be viewed and modified by means of the My

Project designer. More precisely, resources are converted to My.Resources.prefixNNN, where prefix is str for

string resources, bmp for bitmaps, cur for cursors, and ico for icons.

VB6 .resx M Project

My.Resources.prefixNNN

str bmp cur

ico

VB Migration Partner attempts to convert all occurrences of LoadResString, LoadResPicture, and LoadResData

methods into references to My.Resource.prefixNNN elements. This is possible, however, only if the arguments

passed to these method are constant values or constant expressions, as in the following VB6 example:

VBMP LoadResStringLoadResPicture LoadResData

My.Resource.prefixNNN

VB6

 Const RESBASE As Integer = 100

 Const STRINGRES As Integer = RESBASE + 1

 MsgBox LoadResString(STRINGRES)

 Image1.Picture = LoadResPicture(RESBASE + 7, vbResBitmap)

which is correctly translated into:

 Const RESBASE As Short = 100

 Const STRINGRES As Short = RESBASE + 1

 MsgBox6(My.Resources.str101)

 Image1.Picture = My.Resourc es.bmp107

If the first or the second argument isnt a constant, then VB Migration Partner falls back to the LoadResString6,

LoadResPicture6, and LoadResData6 support methods. These methods rely on the same ResourceManager

instance used by the My.Resources class and therefore return the same resource data. This approach ensures that

all .NET localization features can be used on the converted project, including satellite resource- only DLLs.

2 VBMP LoadResString6

LoadResPicture6 LoadResData6 My.Resources

ResourceManager

DLL .NET

Interestingly, if an icon resource is being assigned to a VB6 icon property that has been translated to a bitmap

property under VB.NET, then VB Migration Partner automatically generates the code that manages the conversion,

as in this code:

VB.NET VB6

VB Migration Partner

 Image1.Picture = My.Resources.ico108.ToBitmap()

3.14 Minor language differences

VB Migration Partner generates code that accounts also for minor differences between VB6 and VB.NET.

VB Migration Partner VB6 VB.NET

Font objects Font○Ⱪ☺▼◒♩

VB6 s Font and StdFont objects are converted to .NET Font objects. The main difference between these two

objects is that the .NET Font object is immutable. Consider the following VB6 code:

VB6 Font StdFont .NET Font

.NET Font VB6

 Dim fnt As StdFont ' a StdFont objectStdFont ○Ⱪ☺▼◒

♩

 Set fn t = Text1.Font

 fnt.Bold = True

 Text2.Font.Name = "Arial" ' a control ΐs Font property ◖fi♩

─ꜟכ꜡ Fontⱪ꜡Ɽ♥▫

Assignments to font properties are translated to FontChangeXxxx6 methods in the language support library:

Font FontChangeXXXX6

 Dim fnt As Font ' a StdFont objectStdFont ○Ⱪ☺▼◒

♩

 fnt = Text1.Font

 FontChangeBold6(fnt, True)

 FontChangeName6(Text2.Font, "Arial") ' a control ΐs Font property ◖fi♩

─ꜟכ꜡ Fontⱪ꜡Ɽ♥▫

VB Migration Partner provides support also for the StdFont.Weight property. For example, this VB6 code:

VB Migration Partner StdFont.Weight VB6

 Dim x As Integer

 x = Text1.Font.Weight

 Text2.Font.Weight = x * 2

translates to:

 Dim x As Integer

 x = GetFontWeight6(Text1.Font)

 SetFontWeight6(Text2.Font, x * 2)

The GetFontWeight6 and SetFontWeight6 helper functions map the Weight property to the Bold property. They are

marked as obsolete, so that the developer can easily spot and get rid of them after the migration has completed.

GetFontWeight6 SetFontWeight6 Weight Bold

VB Migration Partner emits a warning if the original VB6 program handles the FontChanged event exposed by the

StdFont object. In this case no automatic workaround exists and code must be fixed manually.

VB6 StdFont FontChanged VB

Migration Partner

For Each loop on multi-dimensional arrays ⌐⅔↑╢ For Eachꜟכⱪ

For Each loops visit multi- dimensional arrays in column- wise order under VB6, and in row- wise order under

VB.NET. When such a loop is detected, VB Migration Partner emits the following warning just before the loop:

