VBMP ()

I 1. Overview

= =4 = =4

1.1 Featuresummary
1.2 The languagesupportlibrary
1.3 The control supportlibrary

1.4Pragmasandthe "convert- test- fix" cycle convert- test- fix

[r—
N

. UsingVB MigrationPartner VB MigrationPartner

=A =4 =4 4 -4 A -4 -

2.1Loadingthe VB6 project VB6
2.2Convertingto VB.NET VB.NET
2.3Compilinghe VB.NETsolution VB.NET
2.4Fixingthe VB6 code VB6
2.5LaunchingVisualStudio Visual Studio
2.6 Usingcode analysisfeatures

2.7 Usingassessmentfeatures

2.8 Customizingthe code window

[r—
w

. ConvertingLanguageElements

=A =4 =4 4 =4 4 -4 A -4 A -4 A -4 A -4 -

3.1Array bounds

3.2Defaultmembers

3.3G0oSub,0n GoTo,andOn GoSubkeyword GoSub On GoTo
3.4Fixed lengthstrings (FLSs)

3.5Type EndTypeblocks(UDTs) Type EndType

3.6 Auto- instancingvariables

3.7 Declarestatements

3.8Variantand Control variables

3.9Classesand Interfaces

3.10Finalizaton and disposableclasses disposable
3.11ActiveX Components ActiveX

3.12Persistableclasses

3.13Resources

3.14Minorlanguagdifferences

3.15Unsupportedfeatures and controls

3.16 The VB6Configclass VB6Config

On GoSub

I 4. AdvancedTopics

= =

4.1 The VBMigrationPartner_Supporhodule VB MigrationPartner

4.2 Codeanalysisfeatures

4.3 Refactoringfeatures

4.4 Extenders

4.5 Support for 3rd- party ActiveX controls ActiveX

4.6 Usingthe VBMP commandlinetool VBMP

4.7The VB Project Dumperadd-in VB

4.8 Supportfor DynamicData Exchangg(DDE) DynamicData Exchange(DDE)

=A =4 =4 A 4 =

(62}

. PragmaReference

5.1 Project-level pragmas

5.2 Pragmasthat affect classes
5.3Pragmasthat affect fields andvariables
5.4 Pragmasthat affect how code is converted
5.5Pragmasthat affect forms and controls

5.6 Pragmasthat affect user controls

5.7 Pragmasthat insert or modify code

5.8 Pragmasthat affect upgrademessages

=A =4 =4 4 A4 -4 A4 -4 -4

59 Miscellaneougpragmas

AppendixA. ADOLibrary A ADOLibrary

T A.l.FeaturesandLimitations
1 A.2.InstallingandUsing ADOLibrary ADOLibrary
1 A.3.ADOLibraryReference ADOLibrary

1. Overview

1 1.1 Feature summary

M 1.2 The language support library gwd ' -

9 1.3 The control supportlibrary «fiJ. 2i gwD) ' wmK'l

1 1.4 Pragmas and the "convert -test-fix" cycle k ' -y <4 convert-test-fixe O maw i

1. Overview

VB Migration Partner is a tool that converts VB6 applications to VB.NET. It matches or exceeds the features of the
conversion and assessmenbbls included in Microsoft Visual Studio 2005 or 2008, available on Micrososite, or
provided by other vendors, and is aimed at both the developer and the team manager that needs to plan the

migration process. Release 1.0 generates both VB2005 and \@2fpplications.

VB Migration Partner VB6 VB.NET Microsoft
Visual Studio 2005 2008 Microsoft
/

http://www.infortech.co.jp/product/vbmp_translated_manual_chapter1.html#1

1.0 VB2005 VB2008

VB Migration Partners engine is so fast that VB6 developers can use it to see where the problematic code
sections, have a draft version of the VB.NET application, and produce an estimation of the time required to
complete the migration process, all in adction of the time needed to run the Upgrade Wizard tool included in

Microsoft Visual Studio.

VB Migration Partner VB.NET
Microsoft Visual

Studio Upgrade Wizard

At the end of the migration process VB Migration Partner produces accuratports about the problems it found
together with metrics about the code being migrated. These reports include estimations of the time required to
migrate the VB6 application and individual projects or classes. Reports also include sophisticated code metric
such as total and average cyclomatic index, maximum and average depth of control structures, ratio of comments
to code, in addition to a summary of all the migration issues found by the parser engine. The cost related to these
metrics and issues (in tems of time and money) is fully configurable, and users can export metrics to Microsoft

Excel for further analysis.

VB Migration Partner

VB6
Microsoft Excel
| VB Code | VBNET Code | Wamegs | Mewes
Oaplyy motstor | Mothods >
2 Tom Remark Code Remack w Code Avorage Code Cyclomase =

Boen Nome e e Leas Lnes Lnos Raso Lino Leag® Index s
OGN 540/c4 Medod 28 1 * IBN 1983 1

Getvol Mood 15 0 13 0% 2038 3

MakeRegon Metod 59 7 » 176% 21 13

Peccont Maotod 1] 3 0% » 1

UnSpace Metod 15 3 9 BN PR 5

HaoDec MoPod 15 *% 0% nE 19

GoP3indo Momod 43 -4] B57% 28 3 -
. " ’
Vv Voo -
= SeVol (Sub) Parent llom = MPIMP P tayed\ManModule z
8 ¥ otal Charncters 20
B 7ot Lnes =
e~y tees 1
B Romadk Loes 1
B code Linos %
B Remark Characwns) >

VB Migration Partner owes its high success ratio tiss two main components: (a) a better parser and code
generation engine, and (b) a support library that contains both the language support library and the control support

library.

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Metrics.gif

VB Migration Partner @)
(b)

For example, VB Migration Partnes parser is able to convert a VB6 project groups into a VB.NET solution; it can
convert GoSub and On Goto/Gosub statements; Declare parameters declared wiks Any or that stand for
callback addresses; User Define Type (UDT) blocks that require initialization, dngtancing variables and arrays,

IDisposable objects, fixedength strings, and much more.

VB Migration Partner VB6 VB.NET
GoSub On Goto/Gosub As Any

IDisposable

For converted VB.NET applications to run correctly it is mandatory that the support kloy be distributed with the
other executable files. While a few developers might dislike the approach based on the support library, it can be

easily proved that only this approach can offer full compatibility with VB6 peculiarities and idiosyncrasies.

VB.NET

VB6

Code Architects plans to release more efficient and robust versions of the support library over time. Waeew
version of the support library is released, existing VB.NET applications that use the support library can be upgraded

by simply deploying the new version on the end usercomputer, without having to rerun VB Migration Partner.

VB Migration Partner
VB.NET

1.1 Featuresummary

This section summarizes the main features of Code Architects/B Migration Partner, with emphasis on those that

are unique to this product.

VB Migration Partner

General

91 high-speed conversion (up to 400 VB6 lines on a 3GHz system)

T runs outside Visual Studio
VisualStudio < A isoo £ %3 A°

1 pragmas and extenders can affect migration behavior and help produce better code
k' ~v< <«-@vfitsd]| «2) - L g8 —soecdrd A-- L3 A°
1 open architecture allows 3rd -party vendors to add support for their own ActiveX controls
odkfiedewent" —28% 20> ROz fi b2 | — ActiveX «fi j. 21 dgwd
J A L s %#E Fg A0

Language

1 VB6 project groups are migrated to VB.NET solutions, project references are retained
VB6—Kk. ©Vel ~idKk| k. ©Ve. % 14V VBNET s'* 2 "fir t 43
A °
9 arrays with lower index other than zero
9. — mmfl ¢ P v @—
1 Gosub keyword, calculated On N Goto/Gosub
Gosub« D : D) < t 4 OnN Goto/Gosub
i auto-instancing (As New) variables and arrays
mfi ®2fi ® (As New) /
1 T AsAnyA parameters and callback parameters (AddressOf) in Declare statements
Declare ®¥ > J ofi J ~2%1 { s ASAnys R' ©2 < «2i Pe<R' 02 a4 AddressOf
1 most VB6 keywords not supported by VB.NET, including IsMissing, Array, DoEvents
VB.NET # | awDd J t 4 o ™IsMissing & Array @ DoEvents && 5 F<$>— VB6«¢ D : 3
1 methods in support library exactly replicate the original VB6 behavior (e.g. Format, Dir, MsgBox),
so that les s time has to be spent on reviewing warnings
—osedy| —vBe— L - Format ® Dir8 MsgBox A4 —
28 « 2L A{vE- o L zwmgAo

Owd J ' K

Ui
1 full support for Type blocks (UDTSs), fixed -length strings and arrays thereof
VY mmk K. Pe * D@ </ — < 4 FOWD) =3 A°
1 reading and writing default properties, even in late -bound mode
Pumfi ¢0fiarl A{ehoi s ke Rye — 1 %
9 partial support for Variants, including Empty, Null, and null propagation in string expressions
Empty ¢ Null 8 Null L oSpf.fisd FOW)) =g A9
1 VBG6 system objects, including Screen , Clipboard, App, and Printer
Screen® Clipboard ¢ App® / == Printer & 5 VB6- @¥+ oK 0V«

Formsand Controls h ¢ D> F < «fiy. D

91 converts all controls installed with VB6 (with the exception of OLE container and Repeater
control)
VB6~ || [=wufi ® 21 14 { OLE «fi v 1< Repeater « fi J. D i - ofis. o
AL e A9

9 controls in support library exactly replicate the original VB6 behavior
—«fise i | —vBe— L - =3 A°

Owd J ' K

Ui
91 control arrays, including arrays of menus and 3rd -party controls
©a° 2<OO)»RIYe «fise i — AL gfise i
1 dynamic control creation, both th rough control arrays and the Controls.Add method
ofis. D < Controls.Add & [V o «fij. D
1 popup menus and menu shortcuts
wek=ekos" d<e "Dl o0el 08 D
1 help-related properties and methods
Zikr eVk. RYa <03 ¢P)
1 graphic methods: Line, Circle, PSet, Cls, PaintPicture, Pr intForm methods and all graphics -related
properties (with the only exception of ClipControls and DrawMode)

' hee-o0sereAn F L8 Line?® Cirlcle 8 PSet® Cls® PaintPicture & PrintForm © ¢ P » <

he e« k. R¥:

1 any value for the ScaleMode property, i ncluding custom coordinate systems

ClipControls < DrawMode — A==—a'

O @a4F «DectD)o @yt 5 ScaleModek. Rv=r A{A==-
I T classicA (VB6-style) drag -and-drop
8 o (VB6 Pleanfira. ek
1 automatic and manual OLE drag -and-drop
3V | OLE »
1 DAO and RDO data binding
DAO ¢ D %P umfi ¢ o fi «a< RDO® D 2P wmfi ¢ o fi =

"peasfirr. bk

1 ADO Data binding, including binding to ADO Recordsets and BindingCollection objects, with
support for custom data formatting and StdDataFormat objects
o @2+ D 3ah0Ddyv pJ < StdDataFormat o K ©veJ & e ADO™ «2» 8¢ <
BindingCollection o K © Ve s - A4 ¢ D AP unfi ¢ a fiad 5 ADO ¢ 3 2 P wafi ¢ = fi =
1 DataEnvironment objects (excluding support for grouping and hierarchical recordsets)
~idk 14v" «dy¥ey< G VAR N 2 — DataEnvironment o K ©
\
1 ADO data -source classes and ADO simple data consumer classes
ADO#D 945D ®-' ®< ADO-fiki ¢da«fic* dDve<' ®
9 full support for printi ng, including the Printer object, the Printers collection, and the Print and
PageSetup common dialogs

K'fidoKoves 8k fiade™ <o "Tfis <> o¥es= bk ez fi bumeo ~d g

COM Components COM « fi wDd & fi J

91 better support for IDisposable objects and finalization, including automatic d isposal of fields and
variables pointing to disposable objects
noKoveysd A - td{oKoves —nhedivs 4L 4

< IDisposable o K © v+ J

1 MTS/COM+ components, including support for most common objects in comsvcs.dll
comsves.dll — L noKovesd 5 MTS/ICOM+ « fi wd & fi J

9 priva te and public UserControl classes
K' emz 2! 2 RK' ee—" D@d«fis.2i o' @

1 persistable classes and the PropertyBag object
Persistable « ' @< PropertyBag c K © ¥« |

1 Sub Main is correctly called before any class in a DLL (as in VB6)

VB6— e~ SubMain % DIl —A==—-" @f4 o <o 4 1d54°
1 VBG6 Description attribute translates to XML comments and (if inside a UserControl) to Description
attributes
VB6 — Description attributes &£ XML « o fi y < * D@2 «fis. D - ~ | Description
attributes — 3 A°

91 support for common type libraries such as FileSystemObject, Dictionary, and RegExp, without
requiring COM Interop
COM Interop 4 S oo™ 8 SN mmi ©c ®8¥F 0K OVe) — e o ¢z fi o ak

e T dowd) g A0

1.2 The languagesupportlibrary

The language support library is entirely contained in the CodeArchitects.VBLibrary.fleLand provides support
for language commands that behave differently (or are missing) in the Microsoft.VisualBasic.dll file that comes with
VB2005. All the objects and methods implemented in this support library have a trailibg appended to the

orighal VB6 name, as in DoEvents6 or App6.

CodeArchitects.VBLibrary.DII VisualStudio2005
Microsoft.VisualBasic.DI
VB6 6
App6 DoEvents6

For example, this VB6 code figment:
VB6

If ISEmpty(value) Or IsNull(value) Then
value = Array(1, 2, 3, 4, 5)
End If

is translated to VB.NET as follows:

VB.NET

If ISEmpty6(value) Or IsNull6(value) Then
value = Array6(1, 2, 3, 4, 5)

End If

Methods that replace or extend members of the Microsoft.VisualBasic.dll library are exposed as members of the

VB6Methods module, or other modules defined in the CodeArchitects.VBLibrary.dll.

Microsoft.VisualBasic.DlII
CodeArchitects.VBLibrary.DlI

@ 185177 -

© Appactivaret{ireger, (Ecclesn])

© Appactivsret{Strien, (Boclesn])

© DebugPrintt(Par amirr ay Object())

© Dobugfrotliont(Pac amieray Coyct()

© Loadé(Of THBYReE T)

© LSesEyRef String, Sreg)

V LSe5(0f TDest, TScurcoXByRel TDes, TSource)
© RSaté(ByRef Qung, Streg)

V SavePtured(System.Orowing. Image, RRring)
¥ Unloadi(Codedrchitects, VBELDe aey VESForm)
© UnloadiCbiect)

© AbstlBociean) As Integer

© Absi(Dacenal) As Decensl

© AbsA{Double) As Dowdle

© Absi{Integer) As rkeger

v AbsBlLong) As Long

W AbsA(SHyte) As SByte

© Absi(Sheet) As Short

© AbsE(Sege) As Sewje

© Arrayt(Paesnieray Copct()) As Chjact

© CDatet(Chject) As Date

© CreateObmcté{Stron, [Srrg]) As Cbysct

Vv CVEri{Integer) As Object

© D) As g

© Ot String, (Mcrosolt. VisuaBask FleAttrdxte]) As Rring

© Dolverrst) As Irteger
© FleDte Teneé(Sring) As Oste

Pt Mod ko VBGMethods

Merbee of: CodeArchitects VBOLRrary

sl

¥

These are the VB6 keywords that arent supported by VB.NET and that VB Migration Partner supports by means

of the language support library:

VB6 VB.NET

VBMigrationPartner

1 Array6 creates an array of Object elements.

Array6 | oK © v+ |

i‘ @:lAg

9 CVar6 returns an instance of the VB6Variant class.
CVar6 | VB6Variant «' @—wafi ®=fi @& 3 A0

T CVEm6 returns an instance of the VB6Err or class.
CVEM6 | VBBEMOr «' @—wafi ®2fi @& <5 A

1 ISEmpty6 , IsMissing6 , IsNull6 , and IsObject6 methods account for VB6Variant values.

VB6VariantValue —vV E—w© s p) = o

»fi # Nof ISEmpty6 ¢ IsMissing6 ¢ IsNull6 ¢ IsObject6

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Library.gif

1 LoadPicture6 supports all the arguments as the original VB 6 method, but throws an exception if
these extra arguments can i t be honored.
LoadPicture6 | o' @ni VB6osed»— =— Lowds oq8°2A%s Lo o %
L N L
1 String6é works like StrDup but supports numeric values for its second argument.
Stringé | StrDup — |fe - -3 A9 2= — #N Lowd) =5 A°
1 SavePicture6 saves an image to BMP format.
SavePicture6|yEJVEKhODVEJ—({)D@i =3 A°
1 VarType6 works correctly with scalar and array values stored in an Object element.
VarType6 | o K © v« | — ~rec'ds — &£ Affe~r -~ =3 A0

A few methods are suppaed by VB.NET but behave slightly differently from VB6, therefore VB Migration Partner

re-implements them to ensure that no discrepancy exists:

VB.NET VB6 VBMigrationPartner

1 Abs6 works with Boolean values, too.
Absé | Ko i L oq A0

1 AppActivate6 supports a second wait argument .

AppActivate6 | — wait Lowd s =5A°

1 CbDate6 accepts numeric values strings whose month and day values are reversed (locale -tolerant).
CDate6 | < — % r~of =™ gl . s0i— <eo= <tdr -3
A 9

1 CreateObjecté works well also with public (managed) classes exposed by the current solution.
CreateObject6 | tdVRK B! @< o= —s it 3. Tfig 1 s N

1 DebugPrint6 and DebugPrintLine6 display strings in the Debug window in the same format used
by VBS6.
DebugPrinté < DebugPrintLine6 | VB6<3 [vo 09 hoDwv e — DebugWindow # L

=3 A°

1 Dir6 returns T .A and I ..A elements and then returns names of files in a directory.
Di6 | 6 wds.oxs™Me &£ “53A93Ves” c)' —RDwai &£ o3A0

1 DoEvents6 returns the number of open forms.
DoEvents6 | %4 =™{hodor— L <340

1 FileDateTime6 works with both files and directories (the VB.NET method works only with files).
FileDateTime6 | h Dwmi <" < ' — % =3 0A° VBNET —0 ¢ £) % | N wml —
1% -33X%

1 FileOpen6 , FileClose6, FileGet6 , FilePut6 , and all other file -oriented method rea d and write values
and UDTs using the same format that VB6 uses.
FileOpen6 ¢ FileClose6¢ FileGet6® FilePut6 @ 5 v =— —h O wai oser| L 4 %
-3 A° VB6 # e=™{8s 9ghoOdv e, —" D@D 2 Fi=™7A4c°

1 Format6é supports named formats (e.g. I scientific A) and null values, and accounts for m inor
differences between VB6 and VB.NET.
Formaté | Null VB6< VB.INET < —5[1%c ™ L tdvhodowves Lowd
3 A° scientific

1 Inputé converts coordinates and correctly handles CRs in prompt strings.

Inputé | k. fi k! — # CRL o> -8 - o3 A9
1 IsDate6 accepts strings where m onth and day values are reversed.
IsDate6 | < — % r~of =™ = =3 A°
1 Len6 works both with strings and User -Defined Types (UDTS).
Len6 | <8” D@D - ¢ -3 A°
1 LSet6 has support for strings and partial support for UDTs.
LSet6 | LowdJ =5A9” D@D | QwdJ =5 A°
1 MsgBox6 correctly handles CRs in prompt.
MsgBox6 | k. fik J — CR4 - o3 A
1 RSet6 supports strings.
RSet6 | Lowd s =540
1 Str6 works with dates.
Stré | < - o3 A

1 StrConv6 can convert Byte arrays to a string and works better with conversions to and from
Unicode str ings.
StrConvé | P mm. 4L - A 1 < %% %8 Unicode Yo |- — L - 00
1 TypeName6 returns the value that would be returned under VB6; for example, when applied to an
Int32 returns I LongA , when applied to a button control returns ' CommandA , and so forth.
TypeName6 | VB6# — 4 & <3A° < <=8 nt32 # t 4 v L—| s Longs #° W

fi «fis. i 2 t4vL-]s Commands # 029

The following keywords have been+ignplemented to support extra features for example, Variants and null

propagation in expressions that aren t natively supported by VB.NET:

Null
VB.NET

1 Chr6, CurDiré , Environ6 , Hex6, LCase6, Lefté , Mid6 , Oct6, Right6 , RTrim6 , Space6, Trim6 ,
andUCase6 account for null values.
Chr68 CurDir6é &8 Environ6 8 Hex68 LCase68 Mid68 Oct68 Right6 &8 RTrim6 8 Space6 Trim6 8 /
~= UCase6 | Null Lowd ., «5A°

1 IsArray6 , IsDate6 , IsError6 , IsNothing6 , and IsNumeric6é recognize values stored in Object and
VB6Variant variables.
IsArray6 ¢ IsDate6 ¢ IsError6 ¢ IsNothing6 ¢ / ~= IsNumeric6é | o K o v- J < VB6 Pl e il

4L A v <4 “3 A°

1 Erase6, Redim6, RedimPreserve6, IsArray6 , LBound6 , and UBound6 work with regular arrays,
arrays stored in Object variables, and VB6Array objects.
Erase6¢ Redim6® RedimPreserve6 IsArray6 ¢ LBound6 ¢ UBound6 | o Lowd i -
3A°0KOV.) - td v 8 VB6Armay oK oves Lowd s =3 A

1 Load6 and Unload6 perform additional processing that might be required in VB.NET applications
converted from VB6.
Load6 < Unload6 | VB6 % |- 14V VBINET « k' »2 . " fiz o %ledam™

AL “3 A°

The support library contains the counterpart of VB6 methods that canbe implemenéd or mimicked perfectly
under VB.NET. All the methods in this group are marked as Obsolete, thus they cause a warning message to be

displayed in the Error List window. When invoked, these methods either do nothing or throw an exception:

VB6 VB.NET

1 ImeStatus6 and Calendar6 always return 0, assignments are ignored.
ImeStatusé < Calendar6 | - e, L o3a0 — | td34s

1 AscB6, ChrB6, InstrB6, LeftB6, RightB6, MidB6, InputB6 ,and LenB6 returnan I approximate A
value in VB.NET, and the warning message encourages the developer to edit the original or

migrated code to get rid of such warnings.

AscB68& ChrB6 @ Instr B68 LeftB6 ¢ RightB6 @ MidB6 ¢ InputB6 & LenB6 | VB.NET # T A
L cqA95vs 0e¥d o] % 4L 4 o 80! 081 —«2)d Y amm" D
o T —«enpd A -~ Ly A

1 VarPtr6 , StrPtr6 , and ObjPtr6é throw an exception.
VarPtré ¢ StrPtr6 8 ObjPtre | «' DL e. 1 =5 A°

The six VB6 system objects can be referenced by raes of the following members:
VB6

1 App6: most members are supported, included Previnstance and methods related to event logging;
the OleRequest* and OleServer* properties aren 1 t supported and are marked as obsolete.
App6 F<F2—0fiP|Owd) 1530 mmzfij. ~r <V Previnstance < 0 s ¢ » 4
13 A ° OleRequest*< OleServer*k. R = | tdvil—z2A—z2owd.) 143 3+°

1 Clipboard6: all members are supported.

Clippoardé6 =—ofiP | Owd) td3A°

1 Screen6: all members are supported, except Fonts, FontCount, MousePointer, and Mouse Icon are
flagged as obsolete; assignments to MousePointer and Mouselcon throw an exception.
Screen6 =—ofiP | owdJ 143 A° Fontsd %8 FontCount ¢ MousePointer ¢ Mouselcon
| td3 <ve 4 = |4 v MousePointer < Mouselcon | Le. d>e=3A°

1 Printer6 and Printers6 : all members are supporte d and behave exactly in VB6.
Printer6 < Printers6 VB6 — < s =—ofiP|owdstdga°

Note: support for the Printer6 and Printers6 objects is provided by the VBSupportLib.dll library. This DLL is a VB6

executable, therefore it requires that the VB6 runtime be instatl on the target computer.

Printer6 Printers6 VB6SupportLib.dll DIl
VB6 VB6

In addition to methods and properties, the language DLL support most of the objects defined in tB6 Kintime. All

the objects in this group have a trailing VB6 prefix, as in VB6Variant and VB6PropertyBag.

DIl VB6
VB6Variant VB6PropertyBag VB6

1 VBG6AsyncProperty simu lates asynchronous properties in user controls.

VB6AsyncProperty | * 2@ «fij. D0 — ke RYado =7 5 o5 A°

1 VvBe6DataBinding and the VB6DataBindings collection correspond to the DataBinding and
DataBindings objects defined in the VB6 runtime.
VB6DataBinding < VB6DataBind ings « ™ - T fi | VB6' fi o mmt — t 4 Vv DataBinding <
DataBindings o K © Ve J ~ =3 A°

1 VB6DataEnvironment provides most of the functionality offered by the DataEnvironment object,
except support for grouping, relations, and hierarchical recordsets.
VB6DataEnvironment | DataEnviron mento K o veJ % A{ psf>— & =3 A9
Voosaidgk 817 3. "fs "« peyd o3 A0

1 VB6StdDataFormat and the VB6StdDataFormats collection provide support for custom formatting
in data binding scenarios.
VB6StdDataFormat < VB6StdDataFormats «” <o " fi | 4 D AP wafi 4 s fiac 0! 0—0 @2
Fhodwesowd s d -3 A

1 VvB6DataObject and VB6DataObjectFiles are used in drag -and-drop scenarios to contain data
moved from one control or application to another.
VB6DataObject < VB6DataObjectFiles | 1=—«fij. 21 3V
Paoe Tfigz Wi vedad -l eansafidns. ko ol o# EEW

1 VBG6E ror is the object returned by the CVErr method.
VB6Emor | CVE o0 ser# 19{oKoves #A°

sk oo Tfi —ek

T VB6Licenselnfo and the VB6Licenses collection simulate license features of user controls.
VB6Licenselnfo < VB6Licenses «” <> "fi [* D@ «fi . D1 —' wmifi®@ Ao " D
:»:I A 9

1 VBG6PropertyBag mimic s the functionality of the VB6 PropertyBag object, even though the storage
format differs from VB6 1 s (in other words, itisn T t possible to read VB6 serialized objects from

VB.NET apps, and vice versa).

VB6PropertyBag | VB6 — PropertyBag o K © Ve« J — 4 oV L—#A9 #A%VB6—
L_<|] ofver"d2ehodves#As ™ g{<8VBNET —= k' Yl ' «ai
v VvBeoKoves &L 4 1| #%yyFos — L £ A9

1 VB6Variant duplicates some of the functionality of the original VB6 Variant data type, such as
support for Null and Empty values.
VB6Variant | o' ©ni VB6EP' s fiJ D — — ™ = Y| =3 A° Null £ —
oz2dogwd s =3A°

1 VB6VBControlExtender is the alias for the VBControlExtender object used to trap events from
controls that are added dynamically by means of the Controls.Add method.
VB6VBControlExtender | ControlAdd © s ¢ » ~ |Ff = - tAlVofise 20 Yelk—1
PK mmz fi J t 4 { VBControlExtender o K @ Yo | — <mm' = ®% A °

A few objects have no direct counterpart in VB6:

VB6

1 VBG6Array provides support for arrays with any lower index.

VBBAray | 2Fo0r ™uafie t-0— ~L oqA0

1 VBG6ArrayNew provides support for arra ys of auto-instancing objects (as in Dim arr() As New
Person).
VB6ArrayNew | —fi ®-fi @0 KoV — Lowd, =5A° Dim arr() As New
Person

1 VB6ControlArray mimics VB6 control arrays and can contain both built -in controls and 3rd party

controls.
VB6ControlArray | VB6 — « fi J. i A< - des «fis. 20 < rdParty «
fiJe D0 — - o

1 VvB6ControlCollection is the collection returned by the Controls property of forms and user control;
unlike the .NET Controls collection, it contains controls all the controls hosted by the form or the

user control, including those contained in container controls (e.g. a PictureBox or a Frame control).

VB6ContolCollection | foom <~ D@ «fiJ. D1 —«fis. D1 ke RYor|ff = A« <o
TiiEAS NET—«fisu D0 «7 o Tfis| odgae/ 4| cfivacfisjegi- 54
V06I—d Lzm=sform¥bB do@mefis.diz =[dv =—cfiseoid Fzmyp0

Pictur eBox4 Frame Control
1 VBG6FixedString offer support for the translation of fixed -length strings (FLS).
VB6FixedString | L Afowds 4L oq A
1 VvB6WindowSubclasser can be used to implement safer and more robust window subclassing.
VB6WindowSubclasser | |4 # owefiypdoKe' @ A{—-L A{ ~ el
< ¥ 3A°

Finally, the support library includes managed counterparts of the following COM objects:
COM

1 VvB6Binding and VB6BindingCollection duplicate the functionality of the Binding and
Binding Collection objects in the MSBind type library.
VB6Binding < VB6BindingCollection | MSBind Type Library — — Binding <
BindingCollectionObject — 4 o= ™3 A9

1 VB6Dictionary is the alias for the keyed collection defined in the Scripting type library.
VB6Dictionary | Scripting Type Library — Ve o Tfi— dam v @A

1 VBG6FileSystemObjects and all related classes, such as VB6Drive and VB6File , mimic the behavior
of file -related objects defined in the Scripting type library.
VB6FileSystemObjects < — —Nef -' @ 4 [VvB6Drive < VB6File | Scripting Type
Library — 1 VhD e oKoveys — & o= ™3 A9

1 VB6ObjectContext is the VB.NET counterpart of the COMSVCSLib.ObjectContext used by
MTS/COM+ components.
VB60ObjectContext | MTS/COM+ « fiwd £ fi J ~ |Ff = td =™
COMSVCSLib.ObjectContext — VB.NET FA®

1 VB6RegExp and all r elated classes support the migration of VB6 apps that rely on the VBScript
Regex Engine type library.
VB6RegExp < = — A{ -"' @] VBScript Regex Engine type library — —L<~ VvB6=

"

k' *2c Tfi—vem" 2 Tfidowds o540

1.3 The control supportlibrary

Here is thecomplete list of the 64 controls that VB Migration Partner supports:

VVBMigrationPartner 64
Top-level objects oK ©Ve
Form MDIForm UserControl

Built-incontrols 3 q «fiJ. D

CheckBox ComboBox CommandButton
Data DirListBox DriveListBox

FileListBox Frame HScrollBar

Image Label Line

ListBox Menu OptionButton
PictureBox Shape TextBox
Timer VScrollBar

Windows Common controlsWindows Windows ofisbo D
Animation DTPicker FlatScrollBar
ImageCombo ImageList ListView
MonthView ProgressBar Slider
StatusBar TabStrip Toolbar
TreeView UpDown

Window-less controls Pumfi) P fiJ. D

WLCheck WLCombo WLCommand
WLFrame WLHScroll WLList
WLOption WLText WLV Scroll
Othercontrols / — —«fiJ. D
ADO Data CommonDialog DataCombo
Datal.ist Mask EdBox PictureClip
Remote Data RichTextBox SSTab
Sysinfo WebBrowser

ActiveX Components (invisible at runtime) ActiveX « fi w2 £ fi J (

INet MAPIMessage MAPISession
MSComm ScriptControl Winsocket
ActiveX Controls (visible at runtime) ActiveX « fi w2 £ fi J ():
MSCalendar
MMControl MSChart
(MSCAL.Calendar)

MSDataGrid MSHierarchicalFlexGrid

Notice that the list includes all the controls that are installed with Visual Basic 6, with the only exception of the
OLE container control and the Repeater controfWe plan to add support for the Repeater in a future version of this

support library.)

VisualBasic6 OLE
Version

A Test application
| o e |

Ev r-huunot‘m
| Word Wrap »

frexts oei0 | [Start the tinee | 094645

(Dol kastton)
Framefi Two kinds of
I~ Checkf tem#0 & e
[lem '] v ﬁ
B :
Ootionf T =
C Colionf tem g1
tem#2 v
=]
Line avd shapa controls PrctureBox aedd Imogs el
controls
A Combobox

fcomzot | Fathe comdo |
K - 2|
HEEEA

In general, the name of all #aclasses in the control support library is formed by prefixing/yB6 to the name of
the original VB6 control. For example, the VB6CommandButton control renders the VB6 CommandButton control,

and so on.

VB6 VB6
VB6CommandButton VB6 CommandButton

In most cases, a class that replaces a VB6 control inherits from a Windows Forms control and adds or overrides
members that behave exactly as they do under VB6. For example, the sldmat supports VB6 s TabStrip control
inherits from System.Windows.Forms.TabControl. This approach ensures that the converted VB.NET application

has no dependency from the original ActiveX control.

Windows VB6
VB6 VB6 TabStrip
System.Windows.Forms.TabControl VB.NET

ActiveX

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated%2520App.gif

Only the controls that belong to the ActiveX Components and ActiveX Contrologps listed above are

implemented as wrappers on the original ActiveX objects.

ActiveX ActiveX
ActiveX

If the original VB6 application uses one or more controls listed in the ActiveX Comptsegroup, then the

converted VB.NET project includes a reference to a Tlblagenerated DLL (for example MSCommLib for the MS
Comm control). If the original VB6 application uses one or more controls listed in the ActiveX Controls group, then
the convertedVB.NET project includes a reference to the CodeArchitects.VBLibraryOCX.dll and
CodeArchitects.AxVBLibraryOCX.dll libraries:

VB6 ActiveX
VB.NET Tiblmp DLL
MS Comm Control MSCommLib VB6 ActiveX

VB.NET
CodeArchitects.VBLibraryOCXIl CodeArchitects.AxVBLibraryOCX.dll

Solution Explarer - Solution ‘SamplePry' (1 project) « 0 X

[Sobution "SamplePry (1 project) Al
= 3 Project1
Z8 My Project
= v EEE
“3 ADCDB
« Codefrchitects. AxYEELIbraryOCX
3 CodeArchitects.VBSLbrary
+3 CodeArchitects. VE6LbraryOCx
«J DAO
3 InetCrsObjects
2 Microsoft. VisualBasic, Compatibiity
2 MSCornmlib
+J M50 aGridLib
«2 MSWinsockLb
“J Syskem
“J System.Data
2 System.Deployment
3 Syem.Drawing
«2J System.Windows.Forms
2 Syskeen. xml
) bin
1 obj
1 SupportDilLs
:] ApiForm.vb ~

e e

Here is a list of relevant features that VB Migration Partner supports:
VBMigrationPartner

1 Late binding Punfi ¢ 0 fi e
The fact that members of the VB.NET control have the same name, return type, and syntax as the
original VB6 control ensures that existing code accessing the control in late -bound mode continues
to work after the migration to VB.NET.
VB.NET «fij. 20 —ofiP| 0 s 4 — 4 -8/ «=0' onl VB6 «fis. D

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_References.gif

P — | Late-Boundz > » # «fiJ. Di = « ¥ ®@= 1 8VB.NET ~ v L -
ts™er < o3 A0

1 Standard and popup menus @®=afi 2> 05" D<swek= ekonsa" D
Standard and popup menus are fully supported, including shortcut keys and control arrays of menu
items.
@xfi b)) 0 s D8 weke=ekos” D FOwWd) td=™Mg3A90. Ty cp 0D

07 D wa¥ b —«fiJo. D Low> s <540

Gosubs and Arrays - 5
Cortrol arrays
Common disiogs

[Common contrals

Common controls 2 - I
File controls

g

L DAO Data control
ADO Data control
Recordset-bound form
DataEmvironment form

1 Controlarrays «fiJ. D
All control array features are supported, including dynamic loading and events. Support is
provided by means the VB6ControlArray(Of T) type. Because of the generic nature of this type, VB
Migration Partner supports arrays of any controls, including 3rd party controls. Arrays of menu

items are supported as well.

oz fild 5 =—fis. D Lowd) «=™3 A°gwd |
VB6ControlArray — = mak ~ |} ZA9 | — o mmk — o =V Ers
VBMigrationPartner | rdParty « fi . 21 4 g —«fis. i Lowd s =348°0
FT D" mm¥ b — Lowd s «=™3 A0
1 Dynamic control creation afile D1 —

In addition to loading a control by means of a control array, the CodeArchitects.VBLibrary DLL
fully supports the Controls.Add method. The return value from this method can be assigned to a
VBControlExtender variable, and VB.NET code can handle the ObjectEvent event exactly as the

original VB6 code does.

ofi Jo D —«fis. 2id 4 51 <~ 1 =8 CodeArchitects.VBLibrary DLL |
Controls.Add © s e» & rOwd s ==™3A° | —0se)Yl— {4 |
VBControlExtender - A\ < %% %3 A/ <= VBINET « D | ObjectEvent wmz fi

Lol @ni —VB6«2< 90 - t YL < %#E %y A0

1 Graphicmethods =' he peo0 s
Cls, Line, Circle, PaintPicture, PSet, Point, Print, Scale, TextwWidth, and TextHeight methods are
supported for the Form, PictureBox, and UserControl classes. All graphics -related properties are
fully supported (in cluding AutoRedraw and persistent graphic), except ClipControls and

DrawMode. The PrintForm method is supported, too.

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Popup.gif

Cls, Line, Circle, PaintPicture, PSet, Point, Print, Scale, TextWidth, TextHeight o s e | Form,

PictureBox, UserControl « ' edow> | o3 A° =—a'hooero k.o R¥e | -aw

>J 14 =™3A° AutoRedraw < ~'hese<d 5 Vw8 ClipControls < DrawMode
1L

09 PrintForm o s e | awd s 14 5A°

e S ¥ Fom ActoRedraw
. foem I 2 z ™ PictoreBox AtoRedraw

Coordinate systems <« D 4o £DJ o @V}

ScaleMode property can be set to values other than vbTwips, both at design -time and at run -time;
ScaleLeft, ScaleTop, Scale Width, and ScaleHeight properties and Scale, ScaleX, and ScaleY
methods are supported as well.

ScaleModek. R¥ = | VOTWipS®¢ @ mmi D < - 2 Ly A <%ERyA
ScaleLeft® ScaleTop® ScaleWidth 8 ScaleHeight k. R ¥ = < Scale® Scalex8 ScaleY® s ¢ » | o]
WdJ <= T™3 A°

Databinding ¢ D AP umfi ¢ = fi

The control library supports binding with the Data, RDO Data, and ADODC controls, perfectly
reproducing the VB6 behavior, including custom formatting by means of the StdDataFormat object
and its Parse and Format events. VB Migration Partner supports also bi nding to ADO Recordsets,
DataEnvironment objects, ADO data source classes, ADO simple data consumer classes, and

BindingCollection objects.

«fit. D0 =K' ' | StdDataFormat oK ©¥e) </ — <hOJv) wmzfi) —0 @2
F L L vBe— & - -+ 4d RDO® D> 248 ADODC «fis. 21 # A
<dowd s =3 A9 VBMigrationPartner | ADO Recordsetss DataEnvironment o K © ¥« J 8

ADO Data Source -~ ' ®8 ADO simple data consumer - ' @# BindingCollecton o K © v J # ¢
>a4 A{r<slowds «3Ac¢

Errorcodes <’ 2 ¢ 2 »

When the support library throws an error, the error is raised by means of the Err.Raise method

(rather than a Throw statement). Care has been taken in using exactly the same error codes that

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Graph_App.gif

would be produced in VB6. This detail is essenti al to ensure that existing VB6 error handlers work
correctly after the migration to VB.NET.
Owd J ' K

2|l o™ ~ | t434°VB62 =™« oo L& AL <czs

"%« ' DLe >V -8« D] EmRaise 0 s) Throw ®¥>) ofi

< oL 4 i<s%E%RgAO L — | VBNET r td v #£28 —VvBe <« Dtfiy'
L oo A st aq s A0
1 Enum properties ke RY©

All enumerated values have retained the value they have in VB6. This feature ensures that if an
enum property is assigned a value returned by a Function or read from a configuration file, such a
piece of code continues to work as expected after the migration to VB.NET. Spaces in enumerated

values E asin [Test Value] 'E are replaced by underscores.

= — tdv |evBez J=m{ 4L g A9 | — | Function 5 Vv | N O i
Vol 34 14V %Enumk. Ryor 4 =0t/ —ffeols=—c21 %
VB.NET ~ td v o2 td Ve o st =3 A° — —e0d> o
fi b @¢ = tdga0 s TEST VALUE o°® s TEST_VALUE o

1 Help support HELP
All the help -related properties and methods are supported, including HelpContextID and
WhatsThisHelplD. The converted VB.NET program can continue to use the help file provid ed with
the original VB6 application.
= — HELP —k. R¥= <035 t) | HelpContextD < WhatsThisHelplD & qow> . 1
13400 t 4 v VBINET k. = ©ni VB6= k' 2. Tfiz t 4 v HelpFile
L mog L <%E %y A

F ol

T 300 Whia's Tha bets, chech o0 e Oavion sl
B 08 Bt G WY Bt (A 00 P i

| | Sammtand

O 1 D 95 050 & heip Jepic. Seacrtirg Mo Voaly
T2 1Og 4 SOCONERT RS Nr Vv

e lwe] G [Be |1]
Winkelp Baved Whit's Thi Help

Ta e WhAt's Thes Mg wth & Vieuwl Bt aggidaton, You (el 2eed 10 aot the
lewing progartat o the S WANS That ha'p will Be Colled Sim

Pusgerty Seming
SorderSiyle 3. Fned Dy
Whats ThaByeton Trod

Whats T Troe

Thes Covtos the VWRIL'S Ths Bution 10 3ppeie o0 1 80 cght of 20g foom, Thig Sustin
ol o8 WSS Phey Mg Bigecs Dom D Balp e spec fad o e Agg Mepiie
Prigety Now, Deres o padiem weh sating Pes pragerty wa e Progect Prigenes
SW0g 0N e S000) Nacen von 10 000er n aed pah This 0t el 12 B selatn
B4 10 00 et CAA 1000Ry My Soided 08 1N Sy 0o Mr AEaTatan of e apde on
St of the, 1he App Halphie petgacy thinkd bo spaddad o 208 sonin 8

1.4 Pragmasandthe "convert- test- fix" cycle convert- test- fix

Pragmas are specialemarks that developers can add to the VB6 code to affect the behavior of the VB Migration
Partner. The parser considers as a pragma any comment that starts with th## sequence; if the pragma name

isn t recognized, a warning appears in the Log Activityindow.

VBMigrationPartner VB6
#H#
Log Activity Window

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Migrated_Help.gif

Pragmas encourage the process we ca@bnverttest- fix cycle. The convert test- fix cycle is essentialin

converting large VB6 applications that need to be maintained or expanded until the migration process is completed
and the VB.NET application is ready for the market. For large applications, in fact, the easiest way to ensure that
the VB6 and VB.NET vesions are always insync is doing as much work as possible on the original VB6 code and
annotating it with pragmas. These pragmas tell VB Migration Partner how to migrate given pieces of code without

producing errors.

Pragmas convert- test- fix - -
VB6 VB.NET

VB6 VB.NET
VB6 VB

Migration Partner

A key feature of pragma is that they can be scoped at the project, class, method, and variable level. Prdpat!
pragmas can appear anywhere in the VB6 source code and tlse project: prefix. For example, the following
pragma tells the code generator to use the Arial 10pt font for all the forms in the current project, unless another

FormFont pragma at the form level overrides it:

Pragma
VB6 project:
Arial 10pt
FormFont

'## project:FormFont Arial, 10

Pragma arguments are separated by commastifargument is a string literal that contains commas, it must be
enclosed in double quotes. If an argument contains a command and a double quote character (in a remark, for
example), it must be enclosed in double quotes and all double quotes in the @igialue must be doubled, as you

would do if it were a VB literal string.

VB

There are a few of exceptions to the above rule, most notably the InsertStatemeRgplaceStatement, Rem, and
Note pragmas. These pragmas take just one argument, which is an entire VB.NET statement, and never require that
their only argument be enclosed in double quotes, because the comma tae misinterpreted as an argument

separator

InsertStatement ReplaceStatementRem Note
VB.NET

A pragma can be applied to a specific member by prefixing its name with the membere, using the dot syntax.
For example, the following VB6 code snippet applies the DeclarelmplicitVariables pragma to the Test method (this

pragma forces VB Migration Partner to generate a Dim statement for each variable that is implicitly declared):

VB6 Test DeclarelmplicitVariables
Dim VB Migration Partner

‘## Test.DeclarelmplicitVariables True
N

Sib Test()
N
End Sub

You use the dot syntax to refer to specific variables, if the pragma can be applied to a variable. The following
code tells the code generator to consider theérm variable as an auteinstancing variable (in tis case VB Migration

Partner generates code that preserves the As New semantics):

frm VB Migration

Partner As New

'‘## frm.AutoNew True
Dim frm As New Form1

If a pragma isnt prefixed by project: or by a member name, its scope depends on where it appears in the VB6 code.
The scoping rules are the same as in VB6: if the pragma appears at the clagsrm-, or modulelevel - that is, it
isn tinside a method- it affects the entire form, module, or classd all its members; if the pragma appears inside

a method, then it affects the current method and all its local variables:

Project: VB6
VB6 Pragma class form- module level

Form

Pragma

ub Test()

' this pragma affects all local variables in Test method
‘## AutoNew True
N

End Sub

The effect of a pragma can be overridden by a pragma with a narrower scope. For example, you can use a
project- level AutoNew pragma that affects all the fields and variables, except those that are affected by AutoNew
pragmas at the class, method, or variable level. This hierarchical mechanism adds a lot of flexibility and lets

developers precisely define the outcomieom VB Migration Partner with few additions to the original VB6 code.

AutoNew
AutoNew VB
Migration Partner VB6

VB Migration Partner checks the syntax of all pragmas and doessupport pragmas with arbitrary names; however,
we provide a onesize-fits- all pragma named SetTag, which developers can use to associate values to code

entities. The SetTag pragma is especially useful with extensions.

VB Migration Partner
SetTag
SetTag

You can easily insert new pragmas by means of aldg box that explains what each pragma does and what each

argument means, and that ensures that the syntax is correct.

'i}hsﬂlﬁbmmomcwe X

Seloct Progma Descrpton
Aol bo o Speches how 20 vamencag Sekos of varabies < Bat s Seids of virabies o
AsDepasstioTyre Caciared wih Pae As New Chine - st Do Convanind 0 VENET ¥ Trow s
ASSmpans speched or o Seld P 1l & COMeMd PO DAOeIes WhOEe Qe Dlack
ASSehpenoce Shpres Pl P foer 0t Created £ racesiay when ieerced I E
AryyBiordy Trow o sped fad Sor 3 varalie. Pen B New” clavts 4 G0pped bom Pe
A yyfioa Vanatie SeClaaton and P viratie i placed ol iiumences o e
Assema Type VARathe @ Code e MGEed Uy & 0ol 10 Pe AoNewl() metod The

oo
By ToF rort Scope
CangoType Progect 9 fle Tha Mombor
CassitensaMode
Deciareimpde Vanatioy Argamonts
DefotMombonSuppod Vilie
D adioMersspe
DuatioMes35903
EnatiolMersspe
Enstiohler1 5503 Faise
(S

KeoploncmePropenes
Logeadpn
MadAsolerontod
MadPticAsRolerontod
Werpere3iston

Noto
NtSappon
Oupatiode
Parrolicde
Porihocess
o]

Reglacef ont Teom € 3o matanciog vanabios must 89 weapped by cals 1o e
Repiacef oetSae Atotigwd metcds oo F e

In addition to processing pragmas in VB6 source code files, VB fdigpn Partner looks for the following files:
VB6 VB Migration Partner

1. Afile named VBMigrationPartner.pragmas , in VB Migration Partner 1 s main directory. (This is
known as the "master" pragma file.)
VBMigrationPartne r— @ mmfi ¢ =~ « 4 ' ~ [= ™| sVBMigrationPartner.pragmas < ™e
—hOmmi ® 14| sv @400k’ ~vhDwai ZA

2. Afile named after the project T s file and with the .pragmas extensions - for example,
Widgets.vbp.pragmas for the Widgets.vbp project.
K. ©OVe) hOwai — r~ .pragmas 2 1 [{hDmi e Widgets.vbp k. © v«
J # | Widgets.vbp.pragmas

3. Afile named VBMigrationPartner.pragmas , in the same directory as the project T s .vbp file. (This
file is processed only if the search for previous file fails.)

[

Ko OVe) —vbph Owmi < 0 ¢=" <, ' ~Ne VBMigrationPartner.pragmas < ™e —

RO @ — 0w — % “VES%h—78 1l —hDwi % tdga0

Storing project level pragmas inside these files is necessary or convenient in two cases. First, you can store
project- level PreProcess, ImportTypeLiband AddLibraryPathpragmas only inside these files. Second, this

mechanism allows you to easily share pragma among different projects.

PreProcess ImportTypeLib AddLibraryPath

For example, you can ensure that all the form fonts in multiple projects are converted in the same way by creating

a file named VBMigrationPartner.pragmas containing this text:

http://www.infortech.co.jp/product/chapter1.files/VB_Migration_Partner_Pragmas.gif

VBMigrationPartner.pragmas

'"## FormFont Arial, 10

and then copying it to all the directories that contain the projects you plan to convert. Notice that tiprojectiprefix

is optional for pragmas stored in *.pragmas files.

*.pragmas project:

Keep in mind that the master pragma file in VB Migration Partnes main directory (step 1) is always processed,
whereas the VBMigrationPartner.pragmas file in the VB6 projecfolder (steps 3) is processed only if the search
at step 2 fails. The order in which these files are processed ensures that the settings in files inside the projact
folder can override the settings specified in the master pragma file. For example, if bothe master pragma

file and the pragma file in the projecs folder contain animportTypeLibpragma that refers to the same type library,

the setting specified in the latter file wins.

VB Migration Partner Stepl
VB6 Step3 VBMigrationPartner.pragmas Step2

ImportTypeLib

2.UsingVB MigrationPartner VB MigrationPartner

2.1Loadingthe VB6 project VB6
2.2Converingto VB.NET VB.NET

2.3 Compilingthe VB.NETsolution VB.NET
2.4Fixingthe VB6 code VB6

2.5LaunchingVisual Studio Visual Studio

2.6 Usingcode analysisfeatures

2.7 Usingassessmentfeatures

=A =4 =4 4 -4 A -4 -

2.8 Customizingthe code window

2.UsingVB MigrationPartner VB MigrationPartner

VB Migration Partner requires that Microsoft Visual Studio 2005 or Visual Stu@i@08 be installed on the local
computer. We recommend that you run the migration process on the same computer where you developed and

tested the original VB6 application, therefore also Visual Basic 6 must be installed on the local computer.

VB Migration Rartner Microsoft Visual Studio 2005 Visual Studio 2008
VB6

Visual Basic 6

Using the program is quite simple and revolves around a f@mple actions that can be reached from the toolbar.

Dk

P L MRS

2.1 Loadingthe VB6 project VB6

Select the File Open menu command or click the Open toolbar button to load a VB6 projeebp) or project group
(.vbg). If the project was written with a version of VB6 prior to VB6 you must convert it to VB6 before attempting

the conversion. If the loaded file isrt recognized as a VB6 project or project group a message error is displayed.

File Open Open VB6 .vbp
.vbg VB6 Version

http://www.infortech.co.jp/product/vbmp_translated_manual_chapter2.html#2

VB6 VersionUp VB6

If the EXE or DLL file created bycompiling the VB6 project is present, VB Migration Partner compares its datetime
stamp with the datetime stamp of all the files in the project. If the executable file is older than any of the

corresponding source files, VB Migration Partner displays a wam

VB6 EXE DLL VB Migration Partner
DateTime Source

VB Migration Partner

.} Cr o o o Sy (O SXAS G0N of W swlmad A0 w9 Sk ol B Guln oS e s e (e

Tl iy e Vil B £ T€ 0 P ssonieg e sk s,
OB Fou B IS RIS O BTy O SELN IR PO KRR Saresor.

WarningWe strongly recommend that you always recompile the original VB6 project before attemptieg
conversion to VB.NET and ensure that the VB6 code doegrtontain syntax errors. While VB Migration Partner is
able to spot such errors and solve them in most cases, in some cases these errors might cause invalid VB.NET

code to be emitted and even cras VB Migration Partner.

VB.NET VB6
VB Migration Partner
VB.NET
VB Migration Partner

Note: you can suppress the display of this meage box by selecting the corresponding option in the General tab of

the Tools Options window.

Tools Options General

Ogticrn

| taarn | | Code Edter | Matsce | Hapane | Eonnsone

! Ot maming | VED soauiolbde 3 maang o outdaled
1 faomatoaly buds VB NET soluton afed imegratos

Hrmagomt 0n (roCoAs A0 AN NGE AnTee 3nd wess

&} ragrston produced ees thas 10 » | samngs ences ard osuss
Aveays

Aoty lunch Morcaoh Veusl Sadi ot buid
H 204 procuced 0o wm nge and e
& 1 bud produced e thar i’b = | warmings and enory
Ay
£ Clane e Lheary cache whan VB M gason Pamner sty

Maru ans Toabhar

¥ Show tuth Meno ondy Toobar anly

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Message.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Options.gif

2.2Convertingto VB.NET VB.NET

Select the Build Corvert to VB.NET menu command or click the Convert toolbar button to start the conversion
process. Each source file undergoes three distinct migration stages: the parsing stage, the processing stage, and
the conversion stage. During the process an activitgd is created, so that you can watch which files are being

converted.

Build Convert to VB.NET Convert

27 VB Migration Partner - DAVES, Samples\MP3PiayeAMP3 bp o 2
| Eite Edit Build Jools Melp
L i ol AR A .

w3 VB6 Code | VB200S Code | VB2005 Designer | VB2005 Resowrces | Wamings | Metrics
8“’:‘,‘;"‘ : 1 WERSICN 3.00 -
34 My Projec 2 Tegin VD.Form Player =
Ul Refarencos 2 AutcRedzav - A
« # MaoModute bas \ BacxColer -
© A MNPk bas s, BorcerSsyle -
o # ModShapedF cem bas < Caption -
o M MPIT maData bas 7 Clieatfieaghe =
” bos e Clieatlele -
G sy ClieacTop -
& &3 PlayListém 30 gi;‘:ﬁ'.\udzs :
LinkTopic -
HaxBurcon .

L] OLZOzopMode
14 ScaleXeighs
i Scale¥iath -

SzarceUpPostzion = 2 "CenterScreen
Begin VB.Pigturedox Picwel
BackColer - AN0CH04TH0e
Sordersityle “« B Nose "
« (1] »

ActwiyLog | Magrason Resuls
@B Comvoring project tem D \VB6_SamplesMP 3PlayerManiodule bas -
(B Convorng progect 2o D \VB6_Samples MR 1 1oy e ANMP 3k bas
B Convoring peoject tem DA\VBE_Samples MPIP1ayedmodSaapedFom bas
@ Convering peoject tem D\VB6_SamplesMP 3 laye WP TimeData bas
B Comvonng prosect e D IVB6_Samples AP 3P1ayedOpenDralog bas
(B Coavering peoject tem DA\VBE_Samples MP I tayed Prayor dm
(B Convoning peoject tem D\VEE_Sampled WP 3 layedPlayl stém

Last Migration (7617 5e<) - 5 lssoes, 0 Warnings, 0 ToDos, 2 nos

When the migration process is over, a few new tabs appear in the rightmost painéB Migration Partners main

window:

VB Migration Partner

1 the VB.NET Code tab shows how the code in the currently selected file has been migrated
VB.NET Code

1 the Warnings &b shows all the warnings and issues for the entire project or file that is currently selected
War ings

1 the Metrics tab shows code statistics for the entire project or file that is currently selected

Metrics

The Migration Result pane displays the list of all the issues, warnings, info, anddamessages that have been
emitted as special remarks in the VB.NET code. You can filter these messages by clicking on one obtivddbs at
the top of this pane and you can doublelick a message to quickly jump to the code portion where the message

has been emitted.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Activity_Log.gif

Migration Results VB.NET Issues Warnings ToDos Information

27 VB Migration Partner - DAVES_Samples\MP3PLyer\MP3.vbp E=Ra0]

| Ele Edit Buld Jooils Help
O S FHeowov

& v V6 Code| VE2005 Code | V2005 Dessgnar | VE2005 Resouces | Wamegs | Mevcs)
USP:;:W T 59 ‘ooad - Nl.qtse;‘[:'I.FAQ)‘T{.[L_"‘NI_‘";'.A"'> S — -
et Ope¢ €« ¥ UPGRADE INFC 7 Rl 3 fors instance Play!
¢ 5 Refrescos “ HakeRegion (Me, Ficdiask)
« i MacMocde bas @ » ~¥, 362
A MNP0 Bas «© cab, 3
v M modShapedF oem bas “ True
« M NPT emaData bas e *Po
(L 'OffaetRyn VindovRegion, 5, ~1€2 r
45 OpeaOaiogbos e SesHARGIVRgn (Mo, h¥nd, WindcvRegicn, Troe) 2
B C3: Playe b « * UPGRADE INFC (46181): Referesce tc Sefault form instance
o 0 Playlisthm e OPGRADE ISSUE (214¢8): DrevMode propert
1o Mo . Drawdiode = VDAUN. DravitoceConatansa.vwolopyFen
SecParent (Me . 2¥nd, Player . h¥nd)
3 Move(«1% * 8, 13 = 1)
73 ¥indowRegion = CresteRoundRectRgni(l, i, Piclet.Midia / 135, Picle
4 SecsWindovRgn (Piclet.B¥ng, WindowRegion, Troe)
i For L = 1 To O
L latPl Asaltem(” T 6 Check3izeTormatéis, *00%) € *, Fyie"
2 Next
Dockes = Troe W
« m »
(Actvitylog) MVegraton Resuts
Phses(S) | 7 Wamings (0} P ToDos(0) |/ Information (2) |
Descrgton Fie Lne Project -
£ Oryalliode peopeny sATsupponod and slways redums 1-8lackness Assgnng an . Playevd 29 NP IPLyyer
£ Deawilode peopedy ant suppoded and adways retumns 1-fllacknoss Assignng an Playes vb 135 WP 3Ptayer
[y Relotence 1 Getaut lom instancs Playlint was comvmsed 35 Me keyword G 4
£ Rot 1 SeloR form Playlotwas &% Mo keyword Plalastvd o NP3 yyor)
§ DrawMode peopary sn Y supponed and always retums 1-lackness Assignngan Playlistvh n WP iayer -

| Last Migration (7,617 secs) - § bsswes, 0 Warnings, 0 ToDos 2 Infos - |

I 2.3 Compilingthe VB.NETsolution VB.NETSolution

Select the Build Compile Entire Solution menu command or click the Compile toolbar button to comgdiléha

projects in the current solution to VB.NET without leaving VB Migration Partner. You can also compile individual

projects, by means of the BuildCompile Selected Project menu commanduild Compile Entire Solution
Compile Solution
VB.NET VB Migration Partner Build

Compile Selected Project

Before running the actual compilation, VB Migration Partner has to save VB.NET source code files to disk. By
default, these files are stored in a folder in the same directory as the folder that contains the original VB6 project;
the name of the new folder is obtained by appendingNET to the name of the original folder. You can modify

such default behavior inthe Save tab of the Tools Options dialog.

VB Migration Partner VB.NET
VB6

_NET Tools
Options Save

Before proceedng, VB Migration Partner displays a dialog that allows you to select a different directory:

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Migration_Result.gif

VB Migration Partner

Browse For Folder @@

Select the folder for the new solution

&) V85 Suerples &
B ooy s ook
) 00 - Def ouitMembers
) 00 - Libraey
) 01 - Rectang
) 02 - Digral Chock
) 02 - Function Plot (ENCOMPLETE PROL.
) 02 - Palettes
) 02 - RubberBand
) 02 - WordWrap
) 03 - Hyperinks
L) 03 - ImgPrevw
) 03 - Multiselectlistbox
£ 03 - PairkPic v
< >

| Maie tow Foider | [ok][concel]_

If the target directory already exists and contains files presumably created by a previous migration attgpt

VB Migration Partner displays a message box that asks you to confirm the selection.

VB Migration Partner

If the default choice is OK, you can tell VB Migrain Partner not to display the dialog by enabling the Automatically
Select Output Folder For VB.NET Solutions option, in the TooBptions window. Likewise, you tell VB Migration
Partner not to display the message box by enabling the Automatically OvemvEkisting Output Folder option, in

the same window.

OK Tools Options Save Options
Automatically select output folder for VB.NET solutions
VB Migration Partner Automatically overwrite existing

output folder

Once the compilation process is completed, you can browse all the errors and warnings from the VB.NET compiler

in the Compilation Results pane, near the bottom border.

Compilation Results VB.NET

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Save.gif

27 VB Migration Partner - DAVBS_Samples\MP3Player\MP3xbp L) e
file Ecit Build Jools Help
AP R

s VBSCodo'WPEYCW-:WEIW[W!EIWNIWM[M’
REERNIEN L o |
‘u'fwl e 109 SerNindeviion (play. 2Nnd, WindowRegion, True) - ‘
8 Project é
4 54 Redorances 2131 Play.Drawiode = VBRUN.DrevdodeConatants.viCopyren
« M4 ManModkte bas play.Visible = Troe
« 4§ MMP 3o bas 133 With piePausesSkin =i
« 4§ modShapedFombas 44} «ScaleMode = VBRON. ScaleModelonatants.vbPixels .
w 4§ MP3TimeData bas 239 JAutoRedrav = Troe
nDvalog b 11¢ (AuTOSize ~ True
: :gl’:whn o 217 +Borderdtyle ~ VERUM.YorxBordesdzyletinatanta. vEBiNine
S Piaytistim) s 2nd With

¥indowRegion = MakeRegion(picPauseSkin)
SesRindowRon (Pavse.hknd, ¥indowRegics, Troe)

b2 | Pause.Dravdoge =~ VBRUN,.Draviicdeloastants, vblopyPen
24 Fause,Visible = True
12¢ WizdewRegion = MakeRegron(PiePiskan)

- Ser¥indowikon (PL.hNnd, WindowRegicon, Troe)

138 5 143 proger

129 PL.Drawdode = VBRUN,DrawdcdeConatanss.viCopyPen
30 PL.Visible = Troe

‘ i L] |

Acivy Log| Merason Resus]| Complasca Rescts 1

Destrption Fia Lee Piogect -

& 'Public Propecty Drawhode() As CodeArchaects VBELbrary VBRUN Ora . PlayListvd 70 MPIPlayer !

'Pubic Propecty Drawdicde() As CodeArchencts VBELbeary VBRUN Dia | Player vb ! -

B 'Puble Propecty Drawhode() As CodeAscheects VBRLbeary VBRUNDra . Playeevd 23 MP3Piayer)
{2 Public Propesy DrawMode() As CodeArchects VBELbeary VBRUNDra . Playervb 7] MP3Playet 1
Ay Public Propary DrawMode() As CodaArchiocts VBELbrary VBRUN D3 Playeevb 135 MP3Piayet hal
| Last Build (10856 secs.) - 0 Errors, 5 Wamings ; Jl

Note: the compilation process is optional, especially when migrating a simple VB6 project or a project that you have
already migrated previously and that has been already fixed to avoid compilation errors. In such casesan

directly load the converted code in Microsoft Visual Studio.

VB6

Microsoft Visual Studio

Alternatively, you can direct VB MigratioRartner to compile the VB.NET code immediately after the migration
process, by means of the Automatically Build VB.NET Solution After Migration option, in the Fdgion window.
You have the option to compile unconditionally or only if the conversion pess generated fewer errors, warnings,

and issues than a threshold that you specify.

Tools Options General Automatically build
for VB.NET solution after migration VB.NET
VB Migration Partner

I 2.4Fixingthe VB6 code VB6

Except for trivial applications, yowevercome up with a working VB.NET application at the first attempt. Migrating

VB6 code to the .NET Framework platform is better described as an iterativegess: you are expected to go back

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Compilation_Results.gif

to the original application, edit it to fix all the migration and compilation errors and issues, and convert the code

once again. This is the scacalled convert- test- fix cycle.

VB.NET
VB6 NET Framwork Platform

convert-test- fix

If the converted application has one or more cguilation errors you should probably insert one or more pragmas in

the original VB6 code. You can do so by selecting the VB6 Code tab and the Hdiert Pragma menu command or

by clicking on the Insert Pragma toolbar button. This action displays the Inseragmas dialog, which assists you in

picking up the right pragma and assigning the right arguments. When you click the OK button, the dialog is closed

and the actual pragma is inserted at the current position in the VB6 code.

Pragmas VB6 VB6 Code Edit
Pragma Insert Migration Pragma
Insert Pragmas Pragma
OK VB6 Pragma
27 VB Mtaton Parter - DAVES_ Saonpley WO S VP L vbp o @ =
Efe [t Bodd Toow help
R < o P b o T R
S VO Code | VIINET Godte | Wamengs | Meres
A WPy D AATEIEWte VB Naaw = “raLimcoulet e
My Proecr T pesieet s laakinaseges Codeliairais 4
& z""’"" g + I projectiBissbledesssge 142 I
v M aebodse ¢ I presesniBisenie oy
D VU4 Besiainiopen:nmnsd B2 dnsert Pragma o VB4 Code L
o M mosSaped comtan .
& A AT maOots bak PBite Comet 338 08 = 3 | Gelect Progme Ooncription
& 4§ OperD 200 t Peite Conat '«; Mok | (naOo e o Sgeiten Mow amayy Wt Wil Ggw Sinnds Ml B wdnated Dy Setel
5 5 Pyt R Ssbiea Canse WY ; ASDwgcsatieType Sy BenADs) S Bra Pa Fegrabis o VI NE T
+ 5 Sayiatte D310 Conat m_.t'hlc ASegny
L Rane Cenet B0S WTOM | s amaaice
o Mt anod) i
) Padre Cesen _"7'“.\\1 Ayt
' PBINe Cemet I AT iy ey
10 PRIte Comed BV BTN e,
§ Peiie Conar SUP_ROLNLM .
" e Dl W Jeiw OungTetpm '
" Vo Detdate " "
14 PNite Beniors Penetion J [oar S 8%, ne % hlo .
20 Mmite Declsre Panction N Owctarsrog'c ot
11 P30 Swelare Paitiee [“f ™ m
11 GNe Peedare Paetion H Dwaatiotlons
10 i Beclare Paaties B Wc:g:v Unchanges >
* . o [T— !
t
| Eneiuded, -
| Aty Log | Mgranen Resats | Corpiaton flestn "MM‘
Desorgaon L [y
£ i Progery Orawilode]) As Cosanaitecn VIR beary VB Drn Pyl | CoreramlvesOagmetas
P bl Pty Drnettide) As Coteivaiiects VB oy VSN D Py 17 mttemtens Vnchorge over o s i
A P Prigey © As Consmd o VR D Pyl | CeealuirenPugenes 110 Sivne Bt munl B otad 10 1erd, wibOul Mietieg P (oo bourd 1
A Putig Prigety Draetipne) As Cosalctaect VIR Cowy VISP Dve . Plaped| Logewtpe TIAE 10l B bowee 30 o0t Dourde mal s
A P bic Progety Drpetinded) A Coselvctaects VIR Loy VISR A (rg . Payeddl | VatAafichoerced By B 5ame vale, 50 DK B0 Iowa Bound Bacomes tees ViAnsy” £ ol |
| Aol - — - - vl Sdtne —- Vs P ol A oNrenc od AT D 0BT SIE T Pt e DA 44T Eey et D
L4t Bl (20854 sect) « O Emors, $ Wamngt Vo ainind 2 o e w endeced w VOEASEY comon Toa VLAY £ 68 aviryt @ Do spached -
—— I

ﬁ.

Insert

~If you have added one or more pragmas, or have modified the original VB6 code in any way from inside VB

Migration Partner, you should now save the new files to disk, by selecting the-lSleve Save VB6 Hes menu

command or by clicking on the Save toolbar button.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Insert_Pragma.gif

Pragma VB Migration Partner VB6

File Save Save VBG6 Files Save

Alternatively, if you have modifiethe original VB6 code from outside VB Migration Partner For example, from
inside Microsoft Visual Basic 6 IDE or from an external editor you can reload the project or project group by

selecting the File Reload menu command or by clicking on the Reldadlbar button.

VB6 VB Migration Partner
Microsoft Visual Basic 6 IDE File Reload

Reload Project Project Group

2.5LaunchingVisual Studio VisualStudio

When you are sasfied of the results from the migration process you can load the converted VB.NET solution inside
Microsoft Visual Studio, by selecting the Tocl®un Microsoft Visual Studio menu command or by clicking the Load

the generated VB.NET code in Microsoft Visu&tudio toolbar button.

Migration Tools Run Microsoft Visual Studio
Load the generated VB.NET ode in Microsoft Visual Studio VB.NET

Solution Microsoft Visual Studio

VB Migration Partner displays the dialog box thatlows you to select the target folder as for the Compile to

VB.NET command then it launches Microsoft Visual Studio and loads the converted VB.NET in it.

VB Migration Partner VB.NET
Microsoft VisualStudio VB.NET

The first thing to do at this point is checking all the errors and warnings in Visual Studiderror List window, and

then all the items in the Task List window.

Visual Studio Error List
Task List

VB Migration Partner can generate for different type of comments in the converted application:

VB Migration Partner

1 UPGRADE_ISSUEerious migration issues that you should s@vmmediately
UPGRADE_ISSUE

1 UPGRADE_WARNIN@igration warnings that might or might not affect the converted application
UPGRADE_WARNING

1 UPGRADE_TODQuggestions about how to manually edit theignated code to avoid a potential problem
UPGRADE_TODO
1 UPGRADE_INFOiformation about the generated VB.NET code, including information about unused constant
and methods and recommendations about the .NET type or methtits can replace a Declare statement.
UPGRADE_INFO VB.NET
NET

By default, only warnings and t@lo comments appear in Visual Studis Task List pane. We suggest that you use
the Tools Options canmand to add the UPGRADE_ISSUE comment to the list of comments that the Task List

recognizes and set its importance to High.

ToDo Visual Studio NET
UPGRADE_ISSUE

Optioms ,’? 5
= Ernvorment ~ Tosk Left optoors
Garwrsd (%] Gortem deletion of Lasks
ASSeDorn Seourty [J‘pe. o b
FekRecover
Doouments Yokées
P ond Regioce
Forks and Colrs Token J&
. b A vty
Brgort and Dgiort Sattings Z:g;‘ [
phrsria ! Ureestoedncacti e
- RN PO
S ! UPGRACE ISR
LSRR _1000
Wb fromser UPGRACC WIS
* Progcts end Scltans
a Sarce Cortred
& Tet &
* Busness Poebonrie Desgrers o

If there are no compilation errors you can run the VB.NET application and see how it behaves.uhlikely that a
complex application runs smoothly at the first attempt, therefore be prepared for runtime exceptions. We
recommend that yo enable the option Break When An Exception Is Thrown in the Delitxgeptions dialog box, so

that you immediately catch unexpected runtime errors that would go unnoticed because of an On Error statement.

VB.NET

Common Language
Runtime Exceptions On

Error Statement

http://www.infortech.co.jp/product/chapter2.files/VS_Options.gif

Exceplions

Break when an egception &:
Naece
* €4+ Bxceplions

e
@
3 Common Language Runtime Exceptions | %)
a
(8]

+ Managed Debugoing Assistants
* Native Run-Time Checks
* Win32 Exceplions

2.6 Usingcode analysisfeatures

At the end of the conversion process VB Migration Partner displays a detailed report in the Metrics tab in the right

portion of the main window.

VB Migration Partner Metrics

1. Select an item in the tree on the left, to display code metrics at the solution, project, or file level.

Solution Project File

2. Select an item from the combobox to further restrict the report to just forms, akses, public or private

members, methods or properties, and so forth.

3. Select an item in the grid to see a more detailed report in the lower area of the Metrics tab.
Metrics

4. Sort the items in the grid in either ascending or descending order, by clicking on a column header.

The sorting feature is especially useful when focusing on the most gexhatic portions of the VB6 solution to be
converted. For example, you can sort all methods on their cyclomatic index in descending order to immediately find

the most complex methods in the application.

VB6

Cyclomatic Index

http://www.infortech.co.jp/product/chapter2.files/VS_Exceptions.gif

| VB6Code | VBNET Code | Wamega| Mewcs |

Oaptay motcator [Mamods =
- =B O3 fomee mmee e g
| 28 | n
Getvol Moo 15 0 13 lo% 033 3
MakeRegon Motod |59 7 » 179%% 201 13
Parcort Motod |4 o 3 lo% s 1
UnSpace Mesod 15 3 9 nR% %3 5
HexDoc Motod 55 5 % 0% £ 19
Gonwindo Moo 43 s % 2857% 2n 3 .
. " ’
Mesic Vale -
SelVol (Sub) Parent ltom - MPIME P tayeqManModule gj
B ¥ otal Charncters 00
B Totai Lones =
Be~oytees 1
ERomadk Loes 1
B code Lines %
B Remadk Characsns 7 >

The Metrics tab of the Tools Options dialog allows you to configure which code metrics appear in the grid and in

the area underneath the grid.

Tools-> Options Options Metrics

L Rosadd Chanoken

I Code Charmcaws 3 %

I Preamas

L Ramade —

I Code Statemerts l_]

¥ Romad o Code Lines Reto
I lmmark i Coze Cnmee labe
W fvroae Code Lne Lenah

|]

I Local Vanabies

£ bnsbet Local Warislies

7 Varane vanatien

I Fieed Loncht Varatkes

L fapvriratyrcing Uariating

7 Nos Zero-baund Avwy vensties

The name of most code metrics values is sexplanatory, but a few might require an explanation.

1 Total Linesis the sum of all code lines in the file, prog, or solution. It includes the lines in the hidden portion
of .frm and .ctl files.

Total Lines File Project Solution frm ctl

1 Code Linesis the number of lines that contain actual executable code; it doegrninclude emptyand remark
lines (which are counted by separate code metrics).

Code Lines

1 Remarkto Code Lines Ratiprovides a broad measure of how well the original VB6 project is documented; the

higher this vale, the better.

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Metrics.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Options_Metrics.gif

Remarks to Code Lines Ratio VB6

Implicit Local Variabless the number of local variables that aren explicitly declared; they are typically
converted as Object variables, therefore yomight need to add the original VB6 code to use a more efficient
type.
Implicit Local Variables

VB6

Variant Variabless the number of Variant variables; they amigrated as Object variables, therefore it is
recommend that you carefully scrutinize each of them and change them to a more efficient type if possible, or
possibly use a SetType pragma to convert them to VB6Variant variables.
Variant Variables
VB6Variant
SetType Pragma
Fixed Length Variabless the number of fixedlength strings. By default they are converted to instances of the
VB6FixedLength clss, but you might want to edit the original VB6 code (or use a UseSystemString pragma) to
transform them into regular string.
Fixed Length Variables VB6FixedLength
String VB6
UseSystenstring Pragma
Auto- Instancing Variabless the number of variables declared with theAs New keyword. These variables
have a different semantics in VB.NET and might behave differently.

Auto- Instancing Variables As New VB.NET

Non Zero Bound Array Variabless the number of arrays whose lower index is nonzero; such arrays require a
pragma to compile correctly under VB.NET.
Non Zero Bound Array Variables Index NonZero VB.NET

Pragma
Gotos, Gosubs, On Gotos and Gosubse the total number of GoTo keywords, GoSub keywords, and
calculated GoTo/GoSub keywords, respectively. VB.NET supports the GoTo keyword and VB Migration
Partner generates code that simates GoSubs and calculated GoTo/GoSub; nevertheless, it is strongly

recommended that you edit the original VB6 application to get rid of them.

Gotos, Gosubs, On Gotos and Gosubs Goto Gosub GoTo/GoSub
VB.NET GoTo VB Migration Partner
GoSubs GoTo/GoSub
VB6

On Errorsand Resumesare the number of On Error statements and of Resume/Resume Next statements.

VB.NET supports them, but you should replace timewith more structured and efficient Try Catch blocks.

On ErrorsandResumes On Error Resume/Resume Next VB.NET
Try Catch

File Operationsis the number of Open, Get#, Put#, and other filelated statements. These keywords dom

behave in exactly the same way in VB6 and VB.NET and VB Migration Partner daesatomatically account

for all these differences, therefore you might need to carefully test each of them.
File Operations Open Get# Put#
VB6 VB.NET VB Migration Partner

1 Exit Pointsis the number of Exit Sub, Exit Function, and Exit Property keywords. This value is included in the
code metrics report because many developers prefer to have a single exit point for each method.
Exit Points Exit Sub Exit Function Exit Property

Exit

1 Cyclomatic Indexs the number of all possible code exation paths in a method and is therefore equal to the
number of tests that should be performed to prove that the method behaves correctly in all situations. When
evaluated at the file, project, or solution level it returns the sum of cyclomatic index of ebntained methods
and therefore can be assumed as a broad measure of the overall complexity of that file, project, or solution.
Cyclomatic Index

File Project Solution

File Project Solution

1 Nesting Levelis the maximum nesting level of blocksside a method. For example, a method that contains a
For loop that contains an If block has a nesting level equal to 2. When evaluated at the file, project, or solution
level it returns the sum of nesting level of all contained methods.
Nesting Level For Loop

File Project Solution

1 If Directivesis the number of #If, #Elself, and #Else keywords. VB Migration Partner is capable to evaluate #If
conditions and converts only the portion of code that is contained in thetrue portion of the #If block. All
other sections must be converted manually, therefore it is a good idea to revise the original VB6 application
and ensure that #If and #Const expressierexactly define the code that you want to convert.
If Directives #If #Elself #Else VB Migration Partner If
If True
VB6 #If #Const

2.7 Usingassessmentfeatures

If the VB6 project has leen already converted, VB Migration Partner can generate an assessment report and
export it Microsoft Excel. The report contains detailed information about each project in the original application,
including code metrics, number of migration issues and miags, and an estimation of time (and money) required to

complete the conversion process.

VB6 VB Migration Partner Microsoft

Excel Project

Run the assessment feature by selecting the Toel&engate Assessment Report menu command or by clicking on

the Assessment toolbar button.

Tools Generate Assessment Report Generate the assessment report

VB Migration Partner lets you select the name of the targé¥licrosoft Excel file and then creates the assessment
report. This step can take several seconds, or even minutes, for long and complex VB6 applications. At the end of

the process a message box allows you to load the generated report inside Microsoft Excel.

VB Migration Partner Microsoft Excel

VB6 Microsoft Excel
‘Py % T . LA b i ramert o N gty Ma? - AT enit (el - = x
e, e Pope Lapet Paman Cwe Sovew vew ®."x
::“* Cone AR B et Sanew . h‘ B M i¥is o x) ;:’*‘“ 9] })
bl SO T T IE 10 I Sl A LS A L L i BE BRI S et o B B el RS 7 ST o ek
Creseee " [“ et » e % Vo Lo toeny
o1 A i . " ® . ' TR ' Auibindt Sshio s d B
t Assessment Report - Entire Solution |
: |
3 Cons Sumamary |
& hovoce | 10t (o) cout]
3 dovicr Devwiiper asr Tan
& Semoce Develoger R nmo
7 Aecnzect e em
§ Sencr Testee 000 am
¥ Propect Masager 0.00 ©00 |
3 forus [‘
u ‘
2 ‘
1) Statiatics & information ‘
4 - | ocowences)
13 Toted by e
36 U of ot B
17 Cytiomens indus £ y
I Soppirted coneaciy 28 |
1% Ureupported comtaoly ® ‘
= | \
n Moot 150t @ evpoened o meAet
2
2 Code Tarks Detaly — o sotv T s .] =]
A Nae l On ivrriore et Cox, 1™ < it Cont Mt Cowt, M (-(m“ ,
D Sppceeaontreimom I8 M0 %9 °) e om ° o™ e 0,00 Chack i perss
X Untigined satriivigs ° < e ° 040 ° o ® cw ¢ QR0 Cradh ang govs
TT U edC ANE AT e e ® cx ° 00 ° o ° cxw ¢ G20 Crovte & werasd
B e e B e .00 19358 2080 & 290 & &0 & GO0 Ravira nqno’
A L s zeaas] s 2o ® a0 o a0l CET |
ol |
" |
12 Migraton iiwoes 458 Warnings i J T [] (0 l - |
»n o M | Sxommmene 9y Cont] e € fSont Cont| then Cont] thge Cons Cwasrigensm
e e . e 400 » B 0 a0 & o ¢ .00 Curseas 16 ¢
ERT Lorwen M salonten ” s 40 L L) QL0 The Sireend Aty
.00 0 Sepurt - Letee Sefvtion Cevie- Setertes Koty - seprpies W S siate Tame %)
tarsy

The first worksheet generated Microsoft Excel file provides a summary of estimated costs f@ entire application.

If the VB6 application contains two or more project, a separate worksheet is generated for each project.

Microsoft Excel

VB6 Project

Project

The Config Resources worksheet allows you to define five different developer roles and assign a different

hourly cost to each of them. The predefined roles are Project Manager, Architect, Junior Developer, Senior

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Assessment.gif

Developer, and Senior Tester, but yatan change their name and cost as you see fit. (You can also add more roles,

if you are an expert Microsoft Excel user.)

Config Resources

Microsoft Excel

1 Resources configuration
Im' l Cont per howl
Architet 2000
50.00
20.00
2.00
€000

Juniee Developer

2523 5[

jom e alvw

|

The Config Migration Warnings worksheet is where you configure how many minutes it takes for each
developer role to fix a given issue or warning message. Each message is identified bjpsocuce hexadecimal ID,

but you can read its description in the rightmost column.

Config Migration Warnings
16 ID

@y_vr e Cohoot Attesiment ol [Compatitliey Made] - Mrosal Exeel - = x
T mome | ean Peptlaedt Foomds: Oute Fedew View W.mx
v / Y) e ¢ sseinien v -
R T TN T
Poite 7 WML P A EERRE G S % A 'cm‘:«':: ;:' e |3 m‘-‘m‘-
Chpbooed ™ Yoot < ¢ Asgreent 3 tesager o St Coly Lstng
A [colid £ £ G
1 Cost for fixing migration issues and warnings (in minutes)
20 [name | s0ev { soev | ac | s | pm [Deription
3 ENIO04 AwB]) ° 0 O The AscB funetion HAY supparted. The AwBS replacement method
4 B0 Ched 0 3 L] 0 0 The Ched fonction int supported. The Chils replacement method
3 ExI1024 Inputh 0 s] [O The InpanB function IS supoanmed. The InputBs replacement
& M08 InstrB] 3 ° ¢ 0 The InstrB function 4at wpported, The ingutds replecement met
7 BMI04 ByrefirgumentiadropernyGat 0 - o [0 Arpament '[0) wis paseed by referonce in Property Get
3 EMI088 LeftB 0 3 o [0 TheLeftd function isnt wpported. The Leftas replacement methos
3 Bwo%t] 3 0 0 0 Theless! AT Sopp The Lenss repl
10 8M3064 0 L) ° [© Theuss(It The Mass replac method]
1 Bn0% 0 3 o [° mw-ummxw« The Righté roplacemant =
12 Bxi084 0 s ° o € The LoadPuture method isa fully supported. This LoadPKtures.
13 Rsom 0 3 ° 0 0 The SawvePiture method isnt fully nupported. The SvePstured res!
14 BMI0A2) 3 0 0 (-]
R <0 . T v -

Finally, in the Config CodeTasks you configure the duration (in minutes) for tasks that arehrelated to
specific migration error and warning messagesfor example, the time required to check 100 lines of code to

ensure that they have been migrated correctly.

Config Code Tasks
100

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Roles.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Costs.gif

.‘% PR . SO Avaivmetl [ongoebiity VoSl « Mot Licel >

T meme | eed Mepelnpet Feweim Ows Geccm Yew v
3 Casom T AR g B B Cenew "5 % .B' ::: ;: Qr ﬂ

e S (BTN RASES I S g E I R O (Sl - 18- a0 RO () Koo e Il st | 2 e pa

sl B T I T i R e _—

4 A L] < e £ LA - — 4. — —

1 Cost for Task (in minutes)

2 [| oev [soav | asc | ns | om [oescription | 3

3 0 ° 0 Raviw mgraed code

Chach sad poauiy sl The Lo POARIOA, 10 M proguviied
Crach a0 poss iy $ust 1he CONUIGTS POSTIA, S1e I Propartes

®
3 ° o 0 L
® 3 ° ¢ 0
° s 0 0 Q@ Cresto s smapper foe 8 legacy COM/ACve X 20504 tontrol

After configuring a report according to your preferences, you should save it to a different Microsoft Excel file, so

that you can reuse it as a templag for subsequent assessments

either for the same or a different VB6 project.

You select which template should be used in the Assessment Report tab of the Te@lptions dialog box.

Microsoft Excel
VB6Project
Reports

Uphacrs

Uenersl | e | Cote bt | Netrca | 1tazert | aranne
Morston reseages
Wanng el s -

9| menages

Don) deaziay rmore han | aon

AzzemrroT resorts
¥ Usedwe defedtionmo ol

Lee the ko lowng custon kenglak

Project

Tools Options

I 2.8 Customizingthe code window Window

You can customize the colors used by the VB6 and VB.NET code windows from inside the Code Editor talein th

Tool Options dialog box.

Tools-> Options Code Editor

VB6 VB.NET

Window

http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Task_Costs.gif
http://www.infortech.co.jp/product/chapter2.files/VB_Migration_Partner_Assessment_Options.gif

3. ConvertingLanguageElements

1 3.1 Array bounds —

1 3.2 Default members ofi P

1 3.3 GoSub, On GoTo, and On GoSub keyword GoSub< On GoTo< On GoSub
1 3.4 Fixed-length strings (FLSS)

1 3.5 TypeN End Type blocks (UDTs) TypeNEndType K. P~ = D@D

1 3.6 Auto -instancing variables wfi @24 @

1 3.7 Declare statements

1 3.8 Variant and Control variables Pl o« fil S cofiJo D

1 3.9Classesand Interfaces «' ®< wmfi 30 h ¥vD ®

7 3.10 Finalization and disposable classes < disposable - ' ®

7 3.11 ActiveX Components ActiveX « fi w2 £ fi |

1 3.12 Persistable classes)

7 3.13Resources ' D ®

1 3.14 Minor language differences 10 —

1 3.15 Unsupported featuresand controls ow> J t o™ < «fiJ. D
l

3.16 The VB6Config class VB6Config -« ' @

3. ConvertingLanguageElements

This section illustrates how B Migration Partner converts VB6 language elements and how you can apply pragmas

to generate better VB.NET code.

VB Migration Partner VB6 VB.NET

3.1Array bounds

VB Migration Partner caradopt five different strategies when converting arrays with narero LBound. Developers

can enforce a specific strategy by means of the ArrayBounds pragma, as in:

VB Migration Partner LBound 5
ArrayBound

" all arrays in scope (class or method) must have LBound =0
- e%os ey — =-— | LBound=Gs0 t 4 roadg 3+

‘## ArrayBounds ForceZero

' ...except the arr variable, which is declared as a VB6Array object
VB6Arrayo K © ¥« | # t 4 Vv oar L

‘## arr.ArrayBounds VB6Array

Please notice that there is a minor but important limitation in how you can apply this pragma to an array variable: if
the array isn t explicitly declared by means of a Dim statement and is only implicitly dereld by means of a ReDim

statement, pragma at the variable scope are ignored. An example is in order:

Dim ReDim

Private Sub Test()
‘## ArrayBounds ForceZero '## arr.ArrayBounds VB6Array
ReDim arr(1 To 10) As String
Redim arr2(1 to 10) As Long

End Sub

Both arrays are implicitly declared by means of a ReDim statement and lack of an exfien keyword. The
abovementioned rules states that the second pragma (scoped at the variable level) is ignored, therefore both arrays

will be affected by the first pragma and will be forced to have a zero lower index:

ReDim Dim

Private Sub Test()
Dim arr() As String " Implicitly declared array -
Dim arr2() As Int eger ' Implicitly declared array -
ReDim arr(10)
ReDim arr2(10)

End Sub

= 1=
— —

(This limitation is common to all pragmas that apply to array variables, not just the ArrayBounds pragma.)

ArrayBounds

Unchanged

The array is emitted asis, and generates a compilation error in VB.NET if it has a nonzero lower bound. This is the
default setting thus you rarely need to use an ArrayBounds pragma to enforce this mode (unless you want to

override a pagma with broader scope).

.NET

ArrayBounds

ForceZero

When this option is selected, the array lower bound is changed to zero and éhupper bound isnt modified. This

strategy is fine when the VB6 code processes the array using a loop such as this:

VB6

Fori=1 To UBound(arr)
N
Next

Shift

VB Migration Partner decreases (or increases) both the lower and the upper bounds by the same value, in such a
way the LBound becomes zero. For example, consider the following VB6 fragment
VB Migration Partner LBound

VB6

‘## arr.ArrayBounds Shift
Dim arr(Lolndex To Hilndex) As String

is translated as follows:

Dim arr(0 To Hilndex - Lolndex) As String

This approach is recommended when it is essential that thember of elements in the array doeshchange after

the migration, and is the right choice when the VB6 code processes the array using a loop such as this:

VB6

Fori=LB ound(arr) To UBound(arr)
N
Next

Also, this is often the best strategy for arrays defined inside UDTs, if the UDT is often passed to a Windows API

method (in which case its essential that their size doesnt change).

WindowsAPI

VBG6Array

If the array has a nonzero lower bound, VB Migration Partner replaces the array with an instance of the

VB6Array(Of T) generic class. For example, the following VB6 statensent

VB Migration Partner VB6ATrray of T

VB6 of T of Type

‘## ArrayBounds VB6Array

Dim arr(1 To 10) As String

Dim arr2(1 To 10, -5 To 5) As Integer
Dim arr3(0 To 10) As Long

are translated as follows:

Dim arr As New VB6Array(Of String)(1, 10)
Dim arr2 As New VB6Array(Of Short)(1, 10, -5, 5)
Dim arr3(0 To 10) As Integer

Instances of the VB6Array class behave much like regular arrays; they suppadeies, assignments between
arrays, and For Each loops:

VB6Array For Each

arr(1) = "abcde"
For Each v In arr2

sum =sum + v
Next

Interestingly, when traversing a mulilimensional arrayn a For Each loop, elements are visited in a coluawise

manner (as in VB6), rather than in rowise manner (as in VB.NET), thus no bugs are introduced if the processing

order is significant.

For Each VB.NET

VB6

In order to support VB6Array objects and for other reasons as well, such support for Variants VB Migration
Partner translates the LBound and UBound methods to the LBound6 and UBound6 methods, réispdc Likewise,

the Erase6, Redim6, and RedimPreserve6 methods are used to clear or resize arrays implemented as VB6Array

objects. (These methods are defined in the language support library CodeArchitects.VBLibrary.dll.)

VB6Array VBMigrationPartner
LBound UBound LBound6 UBound6 Erase6 Redim6 RedimPreserve6
VBG6Array
CodeArchitects.VBLibrary.dll

VB Migration Partrer fully honors the Option Base directive:
VB Migration Partner Option Base

Option Base 1

N

‘## ArrayBounds VB6Array
Dim arr(10) As String
numEls = UBound(arr)

which is translated as:

Dim arr As New VB6Array(Of String)(1, 10)
numEls = UBound6(arr)

Unfortunately, a syntactical limitation of VB.NET prevents from using a VB6Array object to hold an array of UDTs
(i.e. Structure blocks). More precisely, if a VB6Array contains structures, you caad a member of a structure

stored in the VB6Array but you cant assign any member. For example, consider the following VB.NET code:

VB.NET Structure
VB6Array VB6Array
VB6Array
VB.NET

Structure MyUDT
Public ID As Integer
End Struct ure

Sub Main()
Dim arr As New VB6Array(Of MyUDT)(1, 10)
Dim value As Integer = arr(1).1D
' reading a member is OK
ofiPd 1< | #%3A
"assigning a member causes the following compilation error

ofiP— 4 =| «fiRmmi « Dr0d35A
'Expressionisavalue andtherefore cannotbethetargetofanassignment.

%0 4 == ~loda34

arr(1).I1D = value
End Sub

Therefore, in general you should avoid using the VB6Array option to converbaray of structures. However, this is
just a rule of thumb and there can be exceptions to it. For example, if your code assigns whole structures to array
elements (as opposed to individual structure members) and then reads their individual members, tloeingt

structures in a VB6Array object is fine.

VB6Array

VB6Array

ForceVBG6Array

This option is similar to the previous one, excejitapplies to a//arrays in the pragmas scope, regardless of

whether the array has a norzero LBound. This option is useful when the array is declared and created in two
different steps in this case the parser cant decide which strategy to use by lookig at the declaration alone or
when the developer knows that the array is going to be passed to a method that exposes parameters of VB6Array

type. For example, consider this VB6 fragment:

LBound

VB6Array
VB6

‘## ArrayBoun ds VB6Array
Dim arr() As String

Sub Test()
ReDim arr(1 To 10) As String
End Sub

Remember that the VB6Array strategy applies only to arrays that have a nonzero lower index. However, when VB
Migration Partner parses thearrvariableit can t decide whether it has a nonzero lower index, therefore it ignores
the pragma and renders the variable as a standard array (thus causing a compilation error). This is the correct way

to handle such a case:

VB6Array

VB Migration Partner arr

‘## ArrayBounds ForceVB6Array
Dim arr() As S tring

Sub Test()
ReDim arr(1 To 10) As String
End Sub

which is rendered as:

Private arr As VB6Array(Of String)

Public Sub Test()
Redim6(arr, 1, 10)
End Sub

Unlike other ArrayBounds optiong,ou can apply the ForceVB6Array strategy to methodsparameters and return
values, either with a pragma inside the method with no explicit scope or with a pragma outside the method but that

is scoped opportunely:

ArrayBound ForceVB6Array

Function GetValues(arr() As String) As Integer()
‘## ArrayBounds ForceVB6Array
Dim res() as Integer
N
GetValues =res
End Function

‘## InitArray.ArrayBounds ForceVB6Array
Function InitArray() As Integer()

N
End Function

which is translated as follows:

Function GetValues(arr As VB6Array(Of String)) As VB6Array(Of Short)
Dim res As New VB6Array(Of Short)
N
Return res

End Function

Function InitArray() As VB6Array(Of Short)
N
End Function

When dealing with arrays having nonzero lower bound, another pragma can be quite useful. Considetdivnfpl
VB6 code:

VB6

Dim primes(1 To 10) As Long

primes(1) = 1: primes(2) = 2: primes(3) = 3: primes(4) = 5: primes(5) =7

primes(6) = 11: primes(7) = 13: primes(8) = 17: primes(9) = 19: primes(10) =
23

You can use an ArrayBounds pragma to force a zero lower bound or to shift both bounds toward zero, but you need

a separate Shiftindexes pragma to account for the indexes used in the last two lines:

ArrayBound
Shiftindexes

‘## primes.ArrayBounds Shift

‘## primes.Shiftindexes false, 1

Dim primes(1 To 10) As Long

primes(1) = 1: primes(2) = 2: primes(3) = 3: primes(4) = 5: primes(5) =7

primes(6) = 11 : primes(7) = 13: primes(8) = 17: primes(9) = 19: primes(10) =
23

this is the result of the migration to VB.NET:

VB.NET

Dim primes(9) As Integer
primes(0) = 1: primes(1) = 2: primes(2) = 3: primes(3) = 5: primes(4) = 7
primes(5)= 11: primes(6) =13: primes(7) =17: primes(8) =19: primes(9) =23

The first argument of the Shiftindexes is False if the delta value specified in the second argument must be applied
only to constant indexes, True if the delta value must be applied evehem the index is a variable or an expression.

Using True or False makes a difference when the array is referenced from inside a loop. Consider this example:

False
True Shiftindexes

True False

‘## powers.ArrayBounds Shift

‘## Fibonacci.ArrayBounds Shift
‘## powers.Shiftindexes true, 1
‘## Fibonacci.Shiftindexes false, 1

Dim powers(1 To 10) As Double
Dim Fibonacci(1 To 10) As Double
Dim n As Integer

powers(1) = 2
Forn=2To 10

powers(n) = powers(n - 1)*2
Next

Fibonacci(1) = 1: Fibonacci(2) = 1

For n = LBounds(Fibonacci) + 2 To Ubound(Fibonacci)
Fibonacci(n) = Fibonacci(n - 2) + Fibonacci(n - 1)

Next

The difference is in how the loop bounds are specified for the two arrays: for thewea's array the loop bounds are
constant values, therefore it is necessary to compensate in the indexes inside the loop; for fit@naccarray the
loop bounds are specified in terms of LBound and UBound functions, therefore the indexes inside the loop should

not be altered. This is the resulting VB.NET code:

powers
LBound UBound
VB.NET

Dim powers(9) As Double
Dim Fibonacci(9) As Double
Dim n As Short

powers(0) = 2

Forn=2To 10
powers(n - 1) =powers(n - 1 - 1)*2
Next

Fibonacci(0) = 1: Fibonacci(1) =1

For n = LBounds(Fibonacci) + 2 To Ubound(Fibonacci)
Fibonacci(n) = Fibonacci(n - 2) + Fibonacci(n - 1)

Nex

Notice that the Shiftindexes pragma support up to three delta values, thus you can shift indexes also foarzd

3-dimension arrays, as in this code:

Shiftindexes

‘## mat.ArrayBounds Shift
‘## mat.Shiftindexes false, 1, -1
Dim mat(1 To 10, -1 To 1) As Double

Delta values can be negative, can be variables and eegsions.

The first argument of Shiftindexes can also be a regular expression that specifies more precisely to which

expressions the pragma should be applied. For example, consider the following VB6 code:

Shiftindexes
VB6

‘## arr.ArrayBounds Shift

‘## arr.Shiftindexes "(k[row)", 1, 1, ™

Dim arr(1 To 10, 1 To 20) As Integer

Dim k As Integer, row As Integer, col As Integer

arr(1,1)=0
Fork=2To 10

arr(k, 1) = arr(k - 1)+10
Next

Forrow =1to 10
For col = LBound(arr, 2) + 1 To UBound(arr, 2)
arr(row, 1) = arr(row, 1) + arr(row, col)
Next
Next

In this case you want to apply thendex adjustments only when the index expression i& or row , hence the

regular expression used in the Shiftindexes pragma. Heréhe result after then conversion to VB.NET:

k row
Shiftindexes

Dim arr(9, 19) As Short
Dim k As Short, row As Short, col As Short

arr(0,0)=0
Fork=2To 10

arrtlk - 1,0 =amrtkk - 1-1,0)+10
Next

Forrow=1To 10
For col = LBound6(arr, 2) + 1 To UBound6(arr, 2)

arr(row - 1,0)=arr(row - 1,0) +arr(row - 1, col)
Next
Next

Notice that numeric indexes are always affected by the Shiftindexes pragma, butlsgiic numeric constants are

affected only you specify a suitable regular expression (or True) in the first argument.

Shiftindexes

True

3.2 Defaultmembers

The way VB Migration Partner deals with default members depends on how and where the member is defined, and
how it is referenced.

VB Migration Partner

Default property definitions ¢ h ¢ i J k. Rwo©

When converting a the definition of a property that is marked as the default member of its class, VB Migration
Partneradds the Default keyword if the property has one or more arguments; if the property has no parameters, an

upgrade warning is issued, because .NET dodssupport default properties with zero parameters. For example, if
this property is the default membenof its class:

VB Migration Partner
.NET

Public Property Get Text() As St ring
Text=".."
End Property

VB Migration Partner converts it as:

VB Migration Partner

<System.Runtime.InteropServices.Displd(0)> _
Public ReadOnly Property Text() As String

'UPGRADE_WARNING (#0154): Default prepties with zero arguments aren't

supported.
Get
Return "..."

End Get

End Property

Notice that the Property block is tagged with a DispID(0) attribute, so that COM clients see the property as the
default member.

DispID(0) COM

Default method and field definitions ¢ h ¢ i J 0@ 8 e b <he D1) —

When converting a default method or field definition, VB Migration Partner doesih modify the definition, except
for the additionof the DispID attribute. In this case no Default keyword can be used, because this keyword can be

applied only to VB.NET properties.

VB Migration Partner DispID

VB.NET

References to default members in early-bound mode Early Bound=z 2 » 2 —¢ h O 1
ofi P+—

If the VB6 code references a default property, method, or field through a stretyped variable, the code generator
correctly adds the name of the member. Theonversion works correctly for regardless of whether the member

belongs to a class defined in the current project, in another project in the solution, or in a type library.

VB6

Accessing default members in late-bound mode Late Boundz 2 » Z—¢ h O 1 J ofi
P—s<cf @

If the VB6 code references a default property, method, or field through a Variant, Object, or Control variable, by

default VB Migration Partner emits a warning. For example, the following VB6 code

VB6
VB Migration Partner VB6

Sub Test(ByVal obj As Object)
MsgBox obj
obj = "new value"

End Sub

is translated as:

Sub Test(ByVal obj As Object)
'UPGRADE_WARNING (#0354): Unable to read default member of symbol 'obj'.
' Consider using the GetDefaultMember6 helper method.
MsgBox6(obj)
'UPGRADE_WARNING (#0364): Unableto assigndefaultmemberofsymbol'obj'.
' Consider using the SetDefaultMember6 helper method.
obj = "new value"

End Sub

The VB.NET code compiles correctly but delivers boguesults at runtime. You can generate better code by means
of the DefaultMemberSupport pragma:

VB.NET DefaultMemberSupport
Pragma

Sub Test(ByVal obj As Object)
‘## DefaultMemberSupport
MsgBox obj
obj = "new value"

End Sub

which delivers this VB.NET code:

VB.NET

Sub Test(ByVal obj As Object)
MsgBox6(GetDefaultMember6(obyj))
SetDefaultMember6(obj, "new value")

End Sub

The GetDefaultMember6 and SetDefaultMember6 methods are defined in the VBMigrationPartner_Support module.
These methods discover and resolve the default member reference at runtime and work correctly also if the default

member takes one or more arguments. For example, the following VB6 code:

GetDefaultMember6 SetDefaultMember6 VBMigrationPartner_Support

VB6

Sub Test(ByVal obj As Object)
‘## DefaultMemberSupport
Dim res As Integer

x = obj(1)
obj(1)=res+1
End Sub

translates to:

Sub Test(ByVal obj As Object)
Dim res As Short
res = GetDefaultMember6(obj, 1)
SetDefaultMember6(obj, 1, res + 1)
End Sub

The discovery process is carried out only the first time the GetDefaMember6 and SetDefaultMember6 process
an object of given type, because the result of the discovery is reused by subsequent calls on variables of the same

type. All subsequent references are faster and add no noticeable overhead to the-lataind call.

GetDefaultMember6é SetDefaultMember6

Late Bound

3.3GoSub,0On GoTo,and On GoSubkeywords GoSub OnGoTo OnGoSub

VB.NET doesnt support GoSub, OrGoto, and On Gosub statements. VB Migration Partner, however, is able to
correctly convert these VB6 keywords, at the expense of code readability and maintainability. For this reason

we stronglyrecommend that you edit the VB6 application to get rid oflahe statements based on these keywords.

VB.NET GoSub On GoTo On GoSub VB Migration Partner
VB6
VB6

Anyway, you can surely take advantage of VB Migration Partneiliabto handle these statements during the early

stages of the migration process. Les start with the following VB6 method:

VB Migration Partner
VB6

Sub Main()

GoSub First
GoSub Second
Exit Sub

First:
Debug.Print "First"
GoSub Third
Return

Second:
Debug.Print "Second"
' flow into the next section

— % oo Tfir

Third:
Debug.Print "Third"
Return

End Sub
This is how VB Migration Partner converts the code:

VB Migration Partner

Public Sub Main()
Dim _vb6ReturnStack As New System.Collections.Generic.Stack(Of Integer)

_vb6ReturnStack.Push(1): GoTo First

ReturnLabel_1:

_vb6ReturnStack.Push(2): GoTo Second
ReturnLabel_2:

Exit Sub

First:
Debug.WriteLine("First")
_vb6ReturnStack.Push(3): GoTo Third
ReturnLabel_3:
GoTo _vb6ReturnHandler

Second:
Debug.WriteLine("Second")
' flow into the next section
1
fi —

— % oo

Third:
Debug.WriteLine("Third")
GoTo _vb6ReturnHandler

Exit Sub

_vb6ReturnHandler:
Select Case _vb6ReturnStack.Pop()
Case 1: GoTo ReturnLabel 1
Case 2: GoTo ReturnLabel_2
Case 3: GoTo ReturnLabel 3
End Select
End Sub

As you can see, the GoSub keyword is transformed into a GoTo keyword that uses td6RefurnStackariable to
remember where the Return statement must jump toThe _vb6ReturnStackariable holds a stack that keeps
the ID of the return address, a 32bit integer from 1 to N, where N is the number of GoSub statements in the

current method.

GoSub GoTo
_Vvb6ReturnStack _vb6ReturnStack

ID 32Bit N N
GoSub

The Return keyword is transformed into a GoTo keyworlddt points to the _vb6ReturnHandler section, where the

return address is popped off the stack and used to go back to the statement that immediately follows the GoSub.

Return GoTo _vb6ReturnHandler
GoSub

Converting a calculated GoSub delivers similar code, except that the GoSub becomes a GoTo pointing to a Select

Case block. For example, the following VB6 code:

GoSub GoSub Select Case GoTo
VB6

Dim x As Integer

X=2

On x GoSub First, Second, Third
Exit Sub

is converted as:

Dim x As Short = 2

_vb6ReturnStack.Push(4): GoTo OngosubTarget_1
ReturnLabel_4:

" ... (other porti ons omitted for brevity)

OngosubTarget_1:
Select Case x
Case 1: GoTo First
Case 2: GoTo Second
Case 3: GoTo Third
Case Is <=0, Is <= 255: GoTo ReturnLabel_4
Case Else: Err.Raise(5)
End Select

On GoTo statements are converted in a similar way.

On GoTo

Important note:We cant emphasize strongly enough that the code that VB Migration Partner delivers should be
never left in a production application, becauseis unreadable and hardly maintainable. For this reason, all
occurrences of GoSub, On GoTo, and On GoSub keywords cause a warning to be emitted in the generated VB.NET.

(This warning has been dropped in examples shown in this section.)

VB Migration Rartner
GoSub On GoTo On GoSub
VB.NET

3.4Fixed length strings (FLSs)

A fixed-length strings (FLS) is convertedo an instance of the VB6FixedString class. This class exposes a
constructor (which takes the strings length) and the Value property (which takes or returns the stringvalue).

For example, the following VB6 code:

VB6FixedString
Value VB6

Dim fs As String * STRINGSIZE
fs = "abcde"

is converted as follows:

Dim fs As New VB6FixedString(STRINGSIZE)
fs.Value = "abcde"

The Value property eturns the actual internal buffer, an important detail which ensures that VB6FixedString
instances work well when they are passed to Windows API methods that store a result in a ByVal string argument.
Thanks to this approach, calls that pass FLS argumeritsDeclare methods work correctly after the migration to
VB.NET.

Value VB6FixedString ByVal
WindowsAPI
Declare VB.NET

Arrays of FLSs require a special treatment and are migrated differgntConsider the following VB6 code:

VB6

Dim arr(10) As String * 256
arr(0).Value = "abcde"

becomes:

Dim arr() As VB6FixedString_256 = CreateArray6(Of VB6FixedString_256)(0, 10)
arr(0).Value = "abcde"

where VB6FixedString_256 a special class in the VisualBasic6.Support.vb module:
VB6FixedString_256 VisualBasic6.Support.vb

<StructLayout(LayoutKind.Sequential)> _

Public Class VB6FixedString_256
Private Const SIZE As Integer = 256
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=SIZE)> _
Private Buffer As String = VB6FixedString.GetEmptyBuffer(SIZE)

Public Property Value() As String
Get
Return VB@FixedString.Truncate(Buffer, SIZE,
ControlChars.NullChar)
End Get
Set(ByVal value As String)
Buffer = VB6FixedString.Truncate(value, SIZE)
End Set
End Property
End Class

A distinct VB6FixedString_NNN class is generated for each distinct size that appears in FLS declarations inside the

current project.

VBG6FixedString_NNN Project

As you see above, the FLS array is initialized by mesaof a call to the CreateArray6 method. This method ensures
that all the elements in the array are correctly instantiated, so that no NullReference exception is thrown when

accessing any element.

CreateArray6

NullReference

If the array has a nonzero lower index, you can use the ArrayBounds pragma to maintain full compatibility with VB6:

VB6 ArrayBounds

‘## arr .ArrayBounds ForceVB6Array
Dim arr(1 to 10) As String * 256

which is translated to:

Dim arr As New VB6ArrayNew(Of VB6FixedString_256)(1, 10)

The VB6ArrayNew(Of T) generic class differs from the VB6Array(Of T) class in that it autgioally creates an
instance of the T type for each element of the array. Using a plain VB6Array(Of T) type would throw a

NullReference exception when accessing any array element.

VB6ArrayNewOf T T
VB6Array Of T VB6Array Of T

NullReference

Finally, notice that you can force a scalar (not array) FLS to be rendered as a VB6FixedString_NNN class by means

of a SetStringSize pragma, as in this example:

SetStringSize VB6FixedString_ NNN

‘## s.SetStringSize 128
Dim s As String * 128

Such a pragma can be useful if you plan to assign a FLS to an array of FLSs. In practice, howapelying this

pragma to scalar FLSs is rarely necessary.

3.5Type EndTypeblocks(UDTs) Type EndType

The main problem in converting TypeEnd Type blocks a.k.a. UserDefined Types or UDT to VB.NET is that
a .NET structure cant include a default constructor or fields with initializers. This limitation makes it complicated
to convert UDTs that include initialized arrays, autinstancing (4 New) object variables, and fixetength strings,

because these elements need to be assigned a value when the UDT is created.

Type End Type VB.NET UDT .NET

As New

VB Migration Partner solves tis problem by generating a structure with a constructor that takes one dummy
parameter and by ensuring that this constructor is used whenever a new instance of the UDT is created. Consider

the following UDT:

VB Migration Partner

Type TestUdt
" use VB6Array for all arrays with nonzero LBound.
A== — -1 fi . LBounk ~ VB6Arrayd “=9 01 ™9
‘## ArrayBounds VB6Array
a As Integer
b As New Widget
c() As Long

d(10) As Double

e(1 To 10) As Currency

f As String * 10

g(10) As String * 10

h(1 To 10) As String * 10
End Type

This is how it is translated to VB.NET:

VB.NET

Structure TestUdt
Public a As Short
Public b As Obiject
Public c() As Integer
<MarshalAs(UnmanagedType.ByValArray, SizeConst:=11)> _
Public d() As Double
Public e As VB6Array(Of Decimal)
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=10)> _
Public f As VB6FixedString
<MarshalAs(UnmanagedType.ByValArray, SizeConst:=11)> _
Public g() As VB6FixedString_10
Public h As VB6ArrayNew(Of VB6FixedString_10)

Public Sub New(ByVal dummyArg As Boolean)
InitializeUDT()
End Sub

Public Sub InitializeUDT()
b = New Object
ReDim d(10)
e = New VB6Array(Of Decimal)(1, 10)
f = New VB6FixedString(10)
g = CreateArray6(Of VB6FixedString_10)(0, 10)
h = New VB6ArrayNew(Of VB6FixedString_10)(1, 10)
End Sub
End Structure

Note: Previous example uses the ArrayBounds VB6Array pragma owlptove that VB6Array objects are
Initialized correctly; in most cases, the most appropriate setting for this pragma inside UDTs is Shift, because this

setting ensures that the size of UDTS doesrt change during the migration.

VB6Array ArrayBounds
VB6Array
Shift

Notice that the constructor takes an argument only because it is illegal tefihe a parameterless constructor in a
Structure, but the argument itself is never used. Such a constructor is generated only if the UDT contains one or

more members that require initialization, as in previous listing.

The key advantage of having this additional constructor is that it is possible to declare and initialize a UDT in a
single operéon. For example, the following VB6 statement:
VB6

Dim udt As TestUdt

is translated to:

Dim udt As New TestUdt(True)
VB Migration Partner supgprts nested UDTSs, too. For example, the following VB6 definition:
VB Migration Partner VB6

Type TestUdt2
ID As Integer
Data As TestUdt
End Type

is converted to:

Friend Stru cture TestUdt2
Public ID As Short
Public Data As TestUdt

Public Sub New(ByVal dummyArg As Boolean)
InitializeUDT()
End Sub

Public Sub InitializeUDT()
Data = New TestUdt(True)
End Sub
End Structure

A special case occurs when migrating a function or a property that returns a UDT. In this case, the return value is

automatically initialized at the top of the code block, as this example demonstrates:

Function

Function GetUDT() As TestUdt
GetUDT.InitializeUDT()

End Function

Arrays of UDTs are migrated correctly, even if the UDT requires initializatidn such cases, in fact, the array is
initialized by means of the CreateArray6 method, which ensures that the InitializeUDT method be called for each

element in the array:

CreateArray6 InitializeUDT

Dim arr() As TestUdt = CreateArray6(Of TestUdt)(0, 10)

In some cases, a FLS defined inside a UDT must be rendered as a standard string rather than a VB6FixedString
object. This replacement is necesary, for example, when the UDT is passed to an external method defined by a

Declare statement, because the external method expects a standard string.

VB6FixedString

Declare

You can force VB Migration Partner to migrate a FLS as a standard string by means of the UseSystemString
pragma. A FLS affected by this pragma is rendered as a private regular Sys8tring field which is wrapped by a
public property which ensures that values being assigned are always correctly truncated or extended. For example,
consider the following VB6 code:

UseSystemString VB Migration Partner

VB6

Public Type CDlInfo
‘##Title.UseSystemString
Title As String * 30
Artist As S tring * 30

End Type

Even though the two items are declared in the same way, the UseSystemString pragma changes the way the Title

item is rendered:

UseSystemsString Title

Friend Structure CDInfo
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=30)> _
Private m_Title As String
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=30)> _
Public Artist As VB6FixedString

Public Sub New(ByVal dummyArg As Boolean)

InitializeUDT()
End Sub

Public Sub InitializeUDT()
m_Title = VB6FixedString.GetEmptyBuffer(30)
Artist = New VB6FixedString(30)

End Sub

Public Property Title() As String
Get
Return VB6FixedString.Truncate(m_Title, 30,
ControlChars.NullChar)
End Get
Set(ByVal value As String)
m_Title = VB6FixedString.Truncate(value, 30)
End Set
End Property
End Structure

The UseSystemsString pragma can take a boolean value, where True is the default value assumed if you omit the

argument. For example, in the following UDT all items are rendered as regular strings except the Year argument:

UseSystemStriig True

Year

Public Type MP3Tag
‘## UseSystemString
Title As String * 30
Artist As String * 30
Album As String * 30
‘## Year.UseSystemString False
Year As String * 4
End Type

3.6 Auto- instancingvariables

By default, a declaration of an autanstancing variable is migrated to VB.NET verbatim. For example, the following

statement is translatel as-is :

VB.NET as is

Dim obj As New Widget

In most cases, this behavior is correct, even though the VB6 and VB.NET semantics are different. More precisely, a
VB6 auto instancing varble supports lazy instantiation and cambe tested against the Nothing value, because

the very reference to the variable recreates the instance if necessary.

VB6 VB.NET
VB6

VB Migration Partner can generate code that preserves the VB6 semantics, if required. This behavior can be

achieved by means of the AutoNew pragma, which can be applied at the project, class, meéimabvariable level.

VB Migration Partner VB6

AutoNew Project class

The actual effect of this pragma on local variables is different from the effect on clagsvel fields:

Function GetValue() As Integer
‘## obj.AutoNew True
Dim obj As New Widget

obj.Value = 1234
GetValue = obj.Value
End Function

An auto- instancinglocal variable that is under the scope of an AutoNew pragma is declared without tHdéew

keyword; instead, all its occurrences in code are automatically wrapped by the special AutoNew6 method:

AutoNew New

AutoNew6

Function GetValue() As Short
Dim obj As Widget

AutoNew6(obj).Value = 1234

GetValue = ByVal6(obj)
End Function

The AutoNew6 method ensures that thvariable abides by the As New semantics: a new Widget is instantiated
(and assigned to theobjvariable) when the method is called the first time and it is automatically recreated if the

variable is set to Nothing.

AutoNew6 As New
Nothing Widget
obj

A class level field under the scope of an AutoNew pragma is rendered as a property, whose getter block ensures
that the lazy instantiation semanticss honored. For example, bbyis a class level auto instancing field, VB

Migration Partner converts as follows:

AutoNew
obj
VB Migration Rartner

Public Property obj() As Widget
Get
If obj_InnerField Is Nothing Then obj_InnerField = New Widget ()
Return obj_InnerField
End Get
Set(ByVal value As Widget)
obj_InnerField = value
End Set
End Property
Private obj_InnerField As Widget

VB6 also supports arrays of autanstancing elements, and VB Migration Partner fully supports them. If either an
appropriate ArrayBounds or AutoNew pragma are in effect &uch an array, VB Migration Partner renders it as an

instance of the VB6ArrayNew(Of T) type. For example, the following VB6 code:

VB6 VB Migration Partner
ArrayBounds AutoNew VB
Migration Partner VB6ArrayNewOf T VB6

‘## arr. AutoNew
‘## arr.ArrayBounds ForceVB6Array
Dim arr(10) As New TestClass()

is translated as

Dim arr() As New VB6ArrayNew(Of TestClass)(0, 10)

The VB6ArrayNew(Of T) generic type behaves exactly as VB6Array(Of T), except the former automatically ensures

that all its elementsare instantiated before they are accessed.

VB6ArrayNewOf T VB6Array Of T

3.7 Declarestatements

VB Migration Partner is able to automatically solve most of the issuesatdd to converting VB6 Declare
statements to VB.NET. More specifically, in addition to data type conversion (e.g. Integer to Short, Long to Integer),

the code generator adopts the following techniques:

VB Migration Partner VB6 VB.NET
Integer Short Long Integer

I As AnyA parameters g As Anyg R! 0D 2

If the Declare statement includes an As Any parameter, VB Migration Partner takes note of the type of values
passed to it and the passing mechanism used (ByRef or ByVal), and then generates one or more overloads for the
Declare statement. An example of a Windows APl method that requires this treatment is SendMessage, which can

take an integer or a string in its last argument:

As Any VB Migration Partner
ByRef ByVal
WindowsAPI SendMessage

Integer String

Private Declare Function SendMe ssage Lib "user32.dll" _
Alias "SendMessageA" (ByVal hwnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
IParam As As Any) As Long

Sub SetText()
"here we pass a string

T L <34

SendMessage Textl.hwWnd, WM_SETTEXT, 0, ByVal "new text"
End Sub

Sub CopyToClipboard()

"here we pass a 32 -bit integer
VL # 32pit— & =3 A

SendMessage Textl.hWnd, WM_COPY, 0, ByVal 0
End Sub

This isthe VB.NET code that VB Migration Partner generates. As you see, the As Any argument is gone and two

overloads for the SendMessage method have been created:

VB Migration Partner VB.NET As Any

SendMessage

Private Declare Function SendMessage Lib "user32.dll" _
Alias "SendMessageA" (ByVal hwnd As Integer,
ByVal wMsg As Integer, ByVal wParam As Integer,
ByVal IParam As String) As Integer

Private Declare Fun ction SendMessage Lib "user32.dIl" _
Alias "SendMessageA" (ByVal hwnd As Integer, _
ByVal wMsg As Integer, ByVal wParam As Integer,
ByVal IParam As Integer) As Integer

AddressOf keyword and callback parameters AddressOf« D : D » < callbackR! 0D
b

If client code uses the AddressOf keyword when passing a value to alBi2 parameter, VB Migration Partner
assumes that the parameter takes a callback address and overloads the Declare to take a delegate type. For

example, consider the followginVB6 code inside the ApiMethods BAS module:

32bit AddressOf VB
Migration Partner callback
API BAS VB6

Declare Function EnumWindows Lib "user32" _
(ByVal IpEnumFunc As Long, ByVal IParam As Long) As Long

Sub TestEnumWindows()
EnumWindows AddressOf EnumWindows_ CBK, 0
End Sub

' The callback routine
callback i D> Hfi

Function EnumWindows_CBK(By¥&/nd As Long, _
ByVal IParam As Long) As Long

' Store the window handle and return 1 to continue enumeration
L o1 v E- A < Windowt fi » i 4L ~q A

EnumWindows CBK =1
End Function

This is how VB Migation Partner converts the code to VB.NET:
VB Migration Partner VB.NET

" List of Public delegates used for callback methods
callback © s ¢) 14 Public e’ 92 - e

Public Delegate Function EnumWindows_CBK(ByVal hwnd As Integr, ByVal IParam
As Integer) As Integer

Friend Module Modulel
Declare Function EnumWindows Lib "user32" (ByVal IpEnumFunc As Integer, _
ByVal IParam As Integer) As Integer
Declare Function EnumWindows Lib "user32" (By Val IpEnumFunc As
EnumWindows_CBK, _
ByVal IParam As Integer) As Integer

Public Sub TestEnumWindows()
EnumWindows(AddressOf EnumWindows_CBK, 0)
End Sub

' The callback routine
callback i D> Hfi

Function EnumWindows_CBK(ByVal hwWnd As Integer, ByVal IParam As Integer)
As Integer
' Store the window handle and return 1 to continue enumeration
Lot v E- < Window fi » i 4 =3 A

Return 1
End Function
End Module

Notice that only the Declare needs to be overloaded: the code that use the Declare dodsequire any special

treatment.

Windows API methods that can be replaced by calls to .NET methods .NET© & ¢ » -|——
I er|bf = % 1 | WindowsAPI© s © »

VB Migration Partner is aware that calls to some specific Windows API methods can be safely replaced by calls to
static methods defined in the .NET Framewor&s is the case of Beep (which maps to Console.Beep), Sleep
(System.Threading.Thread.Sleep), and a few others. When a call to such a Windows API method is found, it is

automatically replaced by the corresponding call to the .NET Framework.

VB Migration Patner WindowsAPI .NET Framework Static
Beep Console.Beep Sleep System.Threading.Thread.Sleep
WindowsAPI .NET Framework
Windows API methods that have a recommended .NET counterpart ¢4 NET
L = WindowsAPl® & ¢

VB Migration Partner comes with a database of about 300 Windows API methods, where each method is associated
with the recommended replacement for .NET. He parser finds a Declare in this group, a warning is emitted, as in

this example:

VB Migration Partner 300 WindowsAPI
.NET API

" UPGRADE_INFO (#0241): Yocan replace calls to the GetSystemDirectory’
unmanaged method
" with the following .NET member(s): System.Environment.SystemDirectory
Private Declare Function GetSystemDirectory Lib "kernel32.dIl" _
Alias "GetSystemDirectoryA" (ByVal IpBuffer As String, _
ByVal nSize As Integer) As Integer

3.8 Variant and Control variables

By default, Variant variables are converted to Object variables. This default behavior can be changed by means of
the ChangeType pragma, which changes the type of all Variant members (within the pragstpe) into
something else. More specifically, developers can decide that Variant variables are rendered using the special

VB6Variant type, as in this code:

ChangeType

VB6Variant

‘## ChangeType Variant, VB6Variant
Dim v As Variant
Dim arr() As Variant

which is translated to:

Dim v As VB6Variant
Dim arr() As VB6Variant

The VB6Variant type (defined in the language support library) mimics the behavior of the VB6 Variant type as

closely as possible, for example by providing support for the special Null and Empty values.

VB6Variant Language Support Library VB6 Variant
NULL Empty

VB6Variant values can be tested by means of the ISEmpty6 and IsNull6 methods, and are recognized by the
VarType6 method. Optional parameters of type Variant can be tested with the dfig6 function, similarly to what

VB6 apps can do.

VB6Variant ISEmpty6 IsNull6 VarType6
Variant VB6 IsMissing6

The VB6Variant class provides a limited support for hpropagation in math and string expressions. This ability is
achieved by overloading all math and strings operators. The degree of support offered is enough complete for most

common cases, but there might be cases when the result differs from VB6.

VB6Varant Null

VB6

By default VB Migration Partner translates variables and parameters of type Controls to Object variabled
parameters. We opted for this approach because the VB6 Control is actually an IDispatch object and inherently

requires late binding, as in this example:

VB Migration Partner
VB6 IDispatch

' Make all the textboxes on form read -only
hoDFr ReadOnly-A==—v« ®) We - @ {3 A

Dim ctrl As Control
For Each ctrl In Me.Controls

If TypeOf ctrl Is TextBox Then ctrl.Locked = True
Next

If the ctr/ variable were rendered as a System.Windows.Forms.Control object, the code wdwdmpile because
the Control class doesnt expose a Locked property. By contrast, VB Migration Partner renders the variable as an

Object variable and produgs VB.NET code that compiles and executes correctly:

Ctrl System.Windows.Forms.Control
Locked VB Migration Partner
VB.NET
' Make all the textboxes on form read -only
hoDJ+ ReadOnly-A==—v« ®) We - @ 434

Dim ctrl As Object
For Each ctrl In Me.Controls6

If TypeOf ctrl Is VB6TextBox Then ctrl.Locked = True
Next

In other circumstances, however, changing the default behavior might deliver more efficient code. For example,

consider tis VB6 code:

VB6

‘#i# ctrl.SetType Control
Dim ctrl As Control
For Each ctrl In Me.Controls
If TypeOf ctrl Is TextBox Or TypeOf ctrl Is ComboBox Then
ctrl. Text ="
End If
Next

In this case, you can leverage the fact that the System.Windows.Forms.Control class exposes the Text property,

thus you can add a SetType pragma that changes the type for tla#/ variable. This is the resulting VB.NET code:

System.Windows.Forms.Control Text
ctrl SetType VB.NET

Dim ctrl As Control
For Each ctrl In Me.Controls6
If TypeOf ctrl Is VB6TextBox Or TypeOf ctrl Is VB6ComboBox Then
ctrl.Text =""
End If
Next

The ctr/ variable is now strongtyped and the VB.NET code runs faster.
Ctrl VB.NET

Please notice the difference between the ChangeType pragma (which affects all the variabldspanameters of a

given type) and the SetType pragma (which affects only a specific variable or parameter).

ChangeType SetType

3.9Classesand Interfaces

VB Migration Painer deals with VB6 classes and interfaces in a manner that resembles the way interfaces and
coclasses work in COM. More specifically, if a VB6 class naméHZappears in an Implements statement,
anywhere in the current solution, then VB Migration Partngenerates an Interface named&’YZand renames the

original class asXYZLlass. For example, assume that you have the following IPlugin class:

VB Migration Partner COM coclass VB6
XYz VB6 Implements
Solution VB Migration Partner XYZ XYZClass
IPlugin

" the IPlugin cl ass
Sub Execute()

' execute the task ...
End Sub

Property Get Name() As String
' return Name here ...
End Property

Next, assume that the IPlugin class is referenced by an Implements statement in the SamplePlugin defised

elsewhere in the current project or solution:

IPlugin Projec SamplePlugin

"inside the SamplePlugin class
SamplePlugin class — #

Implements IPlugin
Under these assumptions, this is the code that VB Migration Partngenerates:
Migration Partner

Public Class IPlugInClass
Implements IPlugin

Sub Execute() Implements IPlugin.Execute
' execute the task ...
End Sub

ReadOnly Property Name() As String Implements IPlugin.Name
Get
' return Name here ...
End Get
End Property
End Class

Public Interface IPlugin

Sub Execute()

ReadOnly Property Name() As String
End Interface

mplements

This rendering style minimizes the impact on code that references the ISomething class. For example, the following

VB6 code:
ISomething

Sub CreatePlugin(itf As IPlugin)
Set itf = New SamplePlugin
End Sub

is converted to a piece of VB.NET code that is virtually identical, except for the Set keyword being dropped:

Set VB.NET

Sub CreatePlugin(ByRef itf As IPlugin)

itf = New SamplePlugin()
End Sub

References to the IPlugin type are replaced by references to the IPluginClass name only when the class name

follows the New keywordas in this VB6 code:

IPlugin IPlugInClass
VB6

Dim itf As New IPluglin

which translates to

Dim itf As New IPluginClass

You ve seen so far that when a VB6 class appears in an Implenmseatatement, by default VB Migration Partner
takes a conservative approach and creates a both a VB.NET class and an interface. This approach ensures that the
migrated app works correctly in all cases, including when the VB6 class is actually instantidtethost real cases,
however, a type used in an Implements statement never appears as an operand for the New keyword; therefore
generating the class is of no practical use. You can tell VB Migration Partner not to generate the class by means of

a ClassRendeMode pragma:

VB6 Implements VB Migration Partner
VB.NET VB6

Implements New
ClassRenderMode

VB Migration Partner

' render the current class only as an interface

L=< @Lumfi 20 h ¥v) @< o= —q" fi b fi =4

'‘## ClassRenderMode Interface

The ClassRenderMode pragntan t be applied at the project level and has to be specified for each distinct class.

ClassRenderMode

3.10Finalizationand disposableclasses disposable

All VB6 and COM objects interrly manage areference counterthis counter is incremented each time a reference
to the object is created and is decremented when the reference is set to Nothing. When the counter reaches zero
it stime to fire the Class_Terminate event and destroy the jelst. This mechanism is known a&terministic

finalization because the instant when the object is destroyed can be precisely determined.

VB6 COM
Nothing

Class_Terminate

.NET objects dont manage a reference counterrad objects are physically destroyed onlyome timeafter all
references to them have been set to Nothing, more precisely when a garbage collection is started. One of the
biggest challenges in writing a VB6 code converter is the lack of support for deteristi finalization in the .NET

Framework.

.NET Nothing
VB6

NET Framework

VB.NET objects that need to execute code when they are destroyed implement the IDisposatiaface. Such

objects rely on the collaboration from client code, in the sense that the developer who instantiates and uses the
object is responsible for disposing of the object by calling the IDisposable.Dispose methodbefore setting the
object vaiiable to Nothing or letting it go out of scope. In general, any .NET class that defines one or more

class level field of a disposable type should be marked as disposable and implement the IDisposable interface. The

code in the Dispose method should ordertlispose of all the objects referenced by the clastevel fields.

VB.NET IDisposable
Nothing IDsiposable.Dispose
disposable
.NET disposable
IDisposable Dispose

As just noted, the code that instantiates the class is also respsible for calling the Dispose method as soon as the
object isn t necessary any longer, so that referenced disposable objects are disposed as soon as possible. For
example, if the class defines and opens one or more database connections (e.g. an SglCoomedfect), calling

the Dispose method ensures that the connection is closed as quickly as possible. If the call to the Dispose method

is omitted, the connection will be closed only later, at the first garbage collection.

Dispose

disposable

SqlConnection Dispose

Dispose

The .NET Framework also supports finalizable classesfrfalizableclass is a class that overrides the Finalize

method and defines one or more fields that contain Windows handles or other values related

to unmanagegsources. For exampleg class that opens a file by means of the CreateFile Windows API method
must be implemented as a finalizable class. The method in the Finalize method is guaranteed to run when the object
is being removed from memory during a garbage collection. The codheérFinalize method is expected to close all

handles and orderly release all unmanaged resources. Failing to do so would create a resource leak.

.NET Framework Finalizable
Windows
CreateFile Windows API

VB Migration Partner supports both disposable and finalizable classes. However, you might need to insert one or
more pragmas to help it to generate the same quality code that an expeded .NET developer would write. Led

start with a VB6 class that handles the Class_Terminate event

VB Migration Partner disposable
Pragma NET

VB6 Class_Terminate

Private fileHandle As Long

Private Sub Class_Terminate()
' CloseHandle is a Windows API method defined elsewhere by a Declare
statement
CloseHandle| Declare ®¥ 2 J ofi J #> | Y%~ t 4| v WindowsAPlo s
Py ZEA

doseHandle fileHandle
End Sub

VB6 classes that include a Class_Terminate are converted to disposable classes that implement the recommended
Dispose Finalize pattern. The generated code ensures that the code inside the original Class_Terminate evest run

when either a client invokes the Dispose method or when the garbage collection invokes the Finalize method:

Class_Terminate VB6 Dispose Finalize disposable

Dispose

Finalize Class_Terminate

Public Class Widget
Implements IDisposable

Private fileHandle As Integer

Private Sub Class_Terminate VB6()
CloseHandle(fileHandle)
End Sub

Protected Overrides Sub Finalize()
Dispose(False)
End Sub

Puwlic Sub Dispose() Implements System.IDisposable.Dispose
Dispose(True)
GC.SuppressFinalize(Me)

End Sub

Protected Overridable Sub Dispose(ByVal disposing As Boolean)
Class_Terminate_VB6()
End Sub
End Class

If the Terminate event is defined inside a Form or a UserControl class, the Dispose methodtismitted (because
the base class is already disposable); instead, the Form_Terminate or UserControl_Terminate protected method is

overrideen:

Form Dispose
Form_Terminate

UserControl_Terminate

Protected Overrides Sub Form_Terminate_VB6()
CloseHandle(fileHandle)
End Sub

VB MigrationPartner can take additional steps to ensure that, if a class uses one or more disposable objects, such
objects are correctly disposed of when an instance of the class goes out of scope. In other words, not only does the
code generator mark classes with finalizer as IDisposable classes (as explained above) but it also marks classes

using other disposable objects as IDisposable.

VB Migration Partner
Disposable
IDisposable

Finalizer IDisposable Disposable

To explain how this feature works, a few clarifications are in order. As far VB Migration Partner is concerned, a

disposable type is one of the following:

VB Migration Partner Disposable

a. aVB6 class that has a Class_Terminate event (as seen above)
VB6 -

' ®| Class_Terminate mmz fi / & [= ™3 A© #

b. a COM type known to be as disposable (e.g. ADODB.Connection)

COM | disposable< == |kq = ™35 A° ADODB.Connection
c. a COM type that is explicitly marked as disposable by means of a n AddDisposableType pragma, as

in this example: '## AddDisposableType CALib.DBUtils

AddDisposableType k ' = v ~ |} disposable< == |f%~v 3 <14] COM = mak ©

< -= "## AddDisposableType CALib.DBUtils

d. aVBG6 class that has one or more class -level fields of a disposable type

VB6-' @] disposable — 1= —<' @ zihoodiyd [=mmgA>
VB Migration Partner applies these definition in a recursive way. For example, assuming that class C1 has a field of
type ADODB.Connection, class C2 has a field of type C1, and class C3 has a field of class C#,ali¢he C1, C2,

and C3 classes are all marked as IDisposable.

VB Migration Partner C1
ADODB.Connection Cc2 C1 C3 C2
Cl C2 C3 IDisposable

If a type is found to be disposable, the exact VB.NET code that VB Migration Partner generates depends on
whether it s under the scope of an AutoDispose pragma. This pragma takes an argument that can have the

following values:

disposable VB Migration Rartner VB.NET

AutoDispose

No

Variables of disposable types arehhandled in any special way. (This is the default behavior.)
Disposable

Yes

If X is a variableof a disposable type, the Set X = Nothing statement is converted as follows:

X Disposable Set X=Nothing
SetNothing6(Xx)

The SetNothingé method (defined in CodeArchitects.VBLibrary) ensures that the object is cleanpdorrectly. If
the object implements IDisposable then SetNothing6 calls its Dispose method. If the object is a COM object,

SetNothing6 ensures that the objects RCW is correctly released.

SetNothing6 CodeArchitects.VBLibrary
IDisposable SetNothing6 Dispose COM
SetNothing6 RCW

Force
In addition to converting explicit Set X = Nothing statements for disposable objects, VB Migration Partner ensures
that if a VB6 class uses one or more disposable objects, the corresponding VB.NET class implements the

IDisposable interface and all the disposable objects are correctly disposed of in the clad3ispose method.

Disposable Set X=Nothing VB Migrdion Partner VB6
1 Disposable VB.NET IDisposable

Disposable Dispose

Let s see in practice how to use the AutoDispose pragma, starting with the Yes option:
Yes AutoDispose Pragma

‘## AutoDispose Yes

Sub Test()
Dim cn As New ADODB.Connection
Dim rs As New ADODB.Recordset
' opens the connection and the recordset (omitted)
(koo "fidookfi o8™ «2p ¥
"N

Set rs = Nothing
Set cn = Nothing
End Sub

The resulting VB.NET code is identical, except for the SetNothingé method:
SetNothing6 VB.NET

Sub Test()
Dim cn As New ADODB.Connection

Dim rs As New ADODB.Recordset

" opens the connection and the recordset (omitted)
(koo "fidookfi o8™ «2p ¥

"N

SetNothing6(rs)
SetNothing6(cn)
End Sub

Let s see now the effects of the Force option, ancet s assume that the following VB6 code is contained in the

Widget class:

Force VB6 Widget

‘## AutoDispose Force

‘## AddDisposableType CALib.DBULtils
Dim cn As ADODB.Connection

Dim utils As CALib .DBUtils

N

The ADODB.Connection type is known to be disposable, whereas CALib.DBUtils is marked a disposable by the

AddDisposableType pragma. (Such a pragma implicitly has a proieet! scope.) Because of rule d) above, the
Widget class is consideretb be disposable, which makes VB Migration Partner generate the following code:

ADODB.Connection Disposable CALib.DBUtils AddDisposableType
Disposable ProjectLevel
d Widget Disposable VB Migration Partner

Public Class Widget
Implements System.IDisposable

Dim cn As ADODB.Connection
Dim utils As CALib.DBUtils

N
Public Sub Dispose() Implements System.IDisposable.Dispose

SetNothing6(cn)
SetNothing6(utils)
End Sub
End Class

If the Widget class has a Class_Terminate event handler, the code in the Dispose method is slightly different:

Widget Class_Terminate Dispose

Public Sub Dispose() Implements System.IDisposable.Dispose
Try
SetNothing6(cn)
SetNothing6(utils)
Finally
Class_Terminate_VB6()
GC.SupporessFinalize(Me)
End Try
End Sub

Notice that a class that uses disposable objects doeshnecessarily implement the Finalize method, as per .NET
guidelines. Only VB6 classes that have a Class_Terminate event are migrated tblEZB.classes with the Finalize

method.

Disposable .NET Finalize
Class_Terminate VB6 Finalize VB.NET

VB Migration Partner ensures that disposable objects are correctly cleanrag also when they are assigned to
local variables, if a proper AutoDispose pragma is used. For example, consider the following method inside the

TestClass class:

AutoDispose VB Migration Partner Disposable

‘## AutoDispose For ce
Sub Execute()
Dim conn As New ADODB.Connection
If condition Then
Dim wid As Widget
N
End If
End Sub

In such a case VB Migration Partner moves variables declarations to the top of the method, pbtsiethod s
body inside a Try block, and ensures that disposable objects are cleangdin the Finally block. Notice that

thewidvariable is cleanedup as well, because Widget has found it to be disposable:

VB Migration Partner Try
Disposable Final

Widget Disposable wid

Sub Execute()
Dim conn As New ADODB.Connection
Dim wid As Widget
Try
If condition Then
N
End If
Finally
SetNothing6(conn)
SetNothing6(wid)
End Try
End Sub

However, if the method contains one or more On Error statementgh(ich can t coexist with Try blocks) or GoSub
statements (which would produce a forbidden GoTo that jumps inside the-Tgtch block), the code generator

emits a warning that reminds the developer that a manual fix is needed:

1 On Error Try GoSub
Try- Catch GoTo

'"UPGRADE_INFO (#0201): AnOn Error or GoSub statement prevents fromgenerating
"Try -Finally block that clears IDisposable local variables.

The approach VB Migration Partner uses to ensure that disposable variables are cleangdorrectly resolves
most of the problems related to undeterministic finalization in .NET. One of the few cases V8rMion Partner can
t handle correctly is when a class field or a local variable points to an object that is referenced by fields in another

class, as in this case:

VB Migration Partner disposable .NET
VB Migration Partner

Sub Execute()
Dim conn As New ADODEBbnnection
' GlobalConn is a public variable defined in a BAS module
GlobalConn| BAS ©° > i # td=™|RK' e #A

Set GlobalConn = conn

N
End Sub

In this specific case, invoking the Dispose method on the conn varialiauld close the connection referenced by
the GlobalConn variable, which in turn may cause the app to malfunction. Developers can avoid this problem by

disabling the AutoDispose feature for a given variable or for all the variables in a method:

conn Dispose GlobalConn

AutoDispose

Sub Execute()
‘## conn.AutoDispose No
Dim conn As New ADODB.Connection
N

End Sub

3.11ActiveX Components ActiveX

VB Migration Partner supports most of the kinds of COM classes that you can create with VB6. This section

explains how you can findune the VB.NET code being generated.

VB Migration Partner VB6 COM
VB.NET

ActiveX EXE projectsActiveX EXEk. © Ve)

ActiveX EXE projects arent supported in VB.NET and, by default, VB Migration Partner converts them to standard

EXE projects. Developers cachange this behavior by means of the ProjectKind pragma:

ActiveX EXE VB.NET VB Migration Partner EX
ProjectKind

‘## ProjectKind dll

MultiUse, SingleUse, and PublicNotCreatable classesMultiUse ¢ SingleUse® % | -
PublicNotCreatable - ' @

MultiUse and SingleUse classes are converted to public VB.NET classes with a public constructor, so that they can
be instantiated from a different assembly. PublicNotCreatable classes are converted to publid\& classes

whose constructor has Friend scope, so that the class canbe instantiated from outside the current project.

MultiUse SingleUse Public PublicVB.NET
PublicNotCreatable Public VB.NET

Notice that the .NET Framework doesh support the behavior implied by the SingleUse instancing attribute,

therefore SingleUse and MultiUse classes are converted in the same way.

.NET Framework SingleUse
SingleUse MultiUse

In all three cases, the class is marked with a System.Runtime.InteropServices.ProgID attribute, so that it is visible
to COM clients. If the VB6 class was associated to a descriptioihappears as an XML comment at the top of the
VB.NET class:

COM
System.Runtime.InteropServices.ProglD VB6
VB.NET XML
" <summary>
"' description for the Widg et class
" </[summary>

<System.Runtime.InteropServices.ProgID("Projectl.Widget")> _
Public Class Widget

" A public default constructor

RK' pecehoi s «fi @ ' « o

Public Sub New()

' Add initialization ¢ ode here
ﬁo"!{}qjjéllr— <:>=|A
End Sub

' other class members here ...
/— —<' e—ofiPd | - =3 ANNN

End Class

GlobalMultiUse and GlobalSingleUse classes GlobalMultiUse < GlobalSingleUse « !
©

By default, GlobalMultiUse and GlobalSingleUse classes are translated to standard VB.NET classes. However, when
a client accesses a method or property of such classes, VB Migration Partner generates a call to a method of a

default instance namedProjectName _ClassNamnigefinstance, as in:

GlobalMultiUse GlobalSingleUse VB.NET
VB Migration Partner Project

_Deflnstance

' EvalArea is a method of the Ge ometry global multiuse class

" defined in an ActiveX DLL project named CALib

EvalArea | CALib< ™Me — ActiveXDLLk. © V<) r td v
GeometryGlobalMultiUse~ ' ®@—© & b » £ A ©

res = CALib_Geometry Deflnstance.EvalArea(12, 23)

All the *_Deflnstance variables ardefined and instantiated in the VisualBasic6.Support.vb module, in the

MyProject folder.

* Deflnstance MyProject VisualBasic6.Support.vb

In most cases, a global class is used as a singleton class and is never instéadiaxplicitly. In other words, a client
typically never uses a global class with the New keyword and uses only the one instance that is instantiated
implicitly. If you are sure that all clients abide by this constraint, it is safe to translate the classa VB.NET module

instead of a class, which you do by means of the ClassRenderMode pragma:

Global
New Global
ClassRenderMode VB.NET
' (add inside the Geo metry class...) (Geometry « '@ -~ o)

'‘## ClassRenderMode Module

If such a pragma is used, the current class is rendered as a VB.NET Module and no default instance variable is
defined in the client project. When a Module is used, methods can be invadiegctly, the VB.NET code is more
readable, and the method call is slightly faster. Notice that the project name is included in all references, to avoid

ambiguities:

VB.NET

VB.NET

res = CALib.EvalArea(12, 23)

Notice that you shouldnt use the ClassRenderMode pragma with global classes that have a Class_Ternevatd,
because VB Migration Partner automatically renders them as classes that implement the IDisposable interface, and

the Implements keyword inside a VB.NET module would cause a compilation error.

Class_Terminate ClassRenderMode
VB Migration Partner IDisposable
VB.NET Implements

Component initialization « fi w2 £ fi J —

If an ActiveX DLL includes a Sub Main method, then the VB6 runtime ensureattthis method is invoked before
any component in the DLL is instantiated. This mechanism allows VB6 developers to use the Sub Main method to

initialize global variables, read configuration files, open database connections, and so forth.

ActiveX DLL Sub Man VB6 DLL
VB6
Sub Main

This mechanism isnt supported by VB.NET and the .NET Framework in general, therefore VBrafign Partner
emits additional code to ensure that the Sub Main is executed exactly once, before any class of the DLL is

instantiated.

.NET Framework VB.NET VB Migration
Partner DLL Sub Main

Public Class Widget
' This static constructor ensures that the VB6 support library
' be initialized before using current class.
Ll— odfier’ «a|s —o' ed A{ - VBEOWI!' =K
RS RS

Shared Sub New()
EnsureVB6Librarylnitialization()
" Ensure that code in Sub Main be executed before using this class
SubMain—« 2 » %1 —-' @ A{ ~ 4L -5

EnsureVB6Componentlinitialization()
End Sub

' other class members here ...

End Class

- e—ofiPd | - 3 ANNN

The EnsureVB6Librarylnitialization method checks that the language support library is initialized correctly, whereas

the EnsureVB6Componemtitialization method invokes the Sub Main if it hashbeen already executed.

EnsureVB6LibraryInitialization

EnsureVB6Componentinitialization Sub Main

3.12Persistableclasses

Persistalle

VB Migration Partner fully supports VB6 persistable classes. To illustrate exactly what happens, assume that you

have a VB6 class marked as persistable and that handles the InitProperties, ReadProperties, and WriteProperties to

implement persistence

VB Migration Partner VB6

VB6

InitProperties ReadProperties WriteProperties

Const ID_DEF As Integer =0

Const NAME_DEF As String

Public ID As Integer
Public Name As String

"initialize property values

ke Ryo— &

Private Sub Class_InitProperties()

ID =123

Name = "widget name"

End Sub

' read property values when the class is deserialized

v ®%¢ o "

—cidV bk Rye— & g

Private Sub Class_ReadProperties(PropBag As PropertyBag)
ID = PropBag.ReadProperty("ID", ID_DEF)
Name = PropBag.WriteProperty("Name", NAME_DEF)

End Sub

" write property values when the o bject is serialized
OKOVe) %o ! o' waptdVIekes R — & % 5

Private Sub Class_WriteProperties(PropBag As PropertyBag)
PropBag.WriteProperty "ID", ID, ID_DEF
PropBag.WriteProperty "Name”, Name, NAME_DEF

End Sub

The resuling VB.NET class is marked with the Serializable attribute and implements the

System.Runtime.Serialization.|Serializable interface. The class constructor invokes the Class_InitProperty handler:

VB.NET Serializable System.Runtime.Seriaation.|Serializable

Class_InitProperty

Imports System.Runtime.Serialization

<System.Runtime.InteropServices.ProgID("Projectl.Widget")> _
<Serializable()> _
Public Class Widget

Implements ISerializable

‘A public default constructor

Public « ho i J «fi @ ' « o

Public Sub New()
Class_InitProperties()
End Sub

Event handlers are converted as standard private methods:

Private Const ID_DEF As Short =0
Private Const NAME_DEF As String ="

Public ID As Short
Public Name As String =

"initialize property values

ke Rwe— &

Private Sub Class_InitProperties()

ID =123
Name = "widget name"
End Sub

' read property values when the class is deserialized
! i

1
- ®%ec ' = mmutdV[k. Rye— & g

Private Sub Cla ss_ReadProperties(ByRef PropBag As VB6PropertyBag)
ID = PropBag.ReadProperty("ID", ID_DEF)
Name = PropBag.WriteProperty("Name", NAME_DEF)

End Sub

" write property values when the object is serialized

OKOVe) %o ! o' wmptdVIskes R — & % 5

Private Sub Class_WriteProperties(ByRef PropBag As VB6PropertyBag)
PropBag.WriteProperty("ID", ID, ID_DEF)
PropBag.WriteProperty("Name", Name, NAME_DEF)

End Sub

The code inthe GetObjectData and the constructor implied by the ISerializable interface invoke the InitProperties,

ReadProperties, and WriteProperties handlers:

GetObjectData ISerializable InitProperties

ReadProperties WriteProperties

Private Sub GetObjectData(ByVal info As Serializationinfo, _
ByVal context As StreamingContext) Implements
ISerializable.GetObjectData
Dim propBag As New VB6PropertyBag
Class_WriteProperties(propBag)
info.AddValue("Contents", propBag.Contents)
End Sub

Private Sub New(ByVal info As Serializationinfo, ByVal context As
StreamingContext)

Dim propBag As New VB6PropertyBag
Class_InitPropertie s()
propBag.Contents = info.GetValue("Contents", GetType(Object))
Class_ReadProperties(propBag)

End Sub

End Class

All references to the VB6 s PropertyBag object are replaced by references to VB6PropertyBag, a clasthw
similar interface and behavior defined in the language support library. It is important to bear in mind, however, that

binary files created by persisting a VB6 object cahbe deserialized into a VB.NET object, and vice versa.

VB6 PropertyBag
VB6PropertyBag VB6
VB.NET

3.13Resources

VB6 resource files are converted to standard .resx files and cée viewed and modified by means of the My
Project designer. More precisely, resources are converted to My.ResourpesfixNNN where prefixis str - for

string resources, bmp for bitmaps, cur for cursors, and ico foricons.

VB6 .resx M Project
My.Resources.prefixNNN

str bmp cur

ico

VB Migration Partner attempts to convert all occurrences of LoadResString, LoadResie, and LoadResData
methods into references to My.ResourcerefixNNAelements. This is possible, however, only if the arguments

passed to these method are constant values or constant expressions, as in the following VB6 example:

VBMP LoadResString LoadResPicture LoadResData
My.Resource.prefixNNN

VB6

Const RESBASE As Integer = 100

Const STRINGRES As Integer = RESBASE + 1

MsgBox LoadResString(STRIGRES)

Imagel.Picture = LoadResPicture(RESBASE + 7, vbResBitmap)

which is correctly translated into:

Const RESBASE As Short = 100

Const STRINGRES As Short = RESBASE + 1
MsgBox6(My.Resources.str101)
Imagel.Picture = My.Resourc es.bomp107

If the first or the second argument isnt a constant, then VB Migration Partner falls back to the LoadResString6,
LoadResPicture6, and LoadResData6 support methods. These methods rely on the same ResourceManager
instance used by the My.Resourcedass and therefore return the same resource data. This approach ensures that

all .NET localization features can be used on the converted project, including satellite resouoly DLLS.

2 VBMP LoadResString6
LoadResPicture6 LoadResData6 My.Resources
ResourceManager
DLL NET

Interestingly, if an icon resource is being assigned to a VB6 icon property that has been translated to a bitmap
property under VB.NET, then VB Migration Partner automatically generates the code that manages the conversion,

as in this code:

VB.NET VB6
VB Migration Partner

Imagel.Picture = My.Resources.ico108.ToBitmap()

3.14Minorlanguagedifferences

VB Migration Partner generates code that accounts alsorfminor differences between VB6 and VB.NET.

VB Migration Partner VB6 VB.NET

Font objects Fonto K © v« J

VB6 s Font and StdFont objects are converted to .NET Font objects. The main difference between these two

objects is that the .NETFont object is immutable. Consider the following VB6 code:

VB6 Font StdFont .NET Font
NET Font VB6
Dim fnt As StdFont "a StdFont objectStdFont o K © v«

Set fn t = Textl.Font

fnt.Bold = True

Text2.Font.Name = "Arial" ‘acontrol T s Fontproperty «fi
« DI —Fontk. Rwo©

Assignments to font properties are translated to FontChangex6 methods in the language support library:

Font FontChangeXXXX6

Dim fnt As Font "a StdFont objectStdFont o K © v«

fnt = Textl.Font

FontChangeBold6(fnt, True)

FontChangeName6(Text2.Font, "Arial") ‘acontrol T s Fontproperty «fi
. DI —Fontk. R¥®

VB Migration Partner provides support also for the StdFont.Weight property. For example, this VB6 code:

VB Migration Partner StdFont.Weight VB6

Dim x As Integer
x = Textl.Font.Weight
Text2.Font.Weight = x * 2

translates ta:

Dim x As Integer
x = GetFontWeight6(Text1.Font)
SetFontWeight6(Text2.Font, x * 2)

The GetFontWeight6 and SetFontWeight6 helper functions map the Weight property to the Bold property. They are

marked as obsolete, so that the developera easily spot and get rid of them after the migration has completed.

GetFontWeight6 SetFontWeight6 Weight Bold

VB Migration Partner emits a warning if the original VB6 pragn handles the FontChanged event exposed by the

StdFont object. In this case no automatic workaround exists and code must be fixed manually.

VB6 StdFont FontChanged VB
Migration Partner

For Each loop on multi-dimensional arrays ~ %1 4 ForEachi 2 k

For Each loops visit multidimensional arrays in colummise order under VB6, and in rowvise order under

VB.NET. When such a loop is detected, VB Migration Partner entits following warning just before the loop:

